Ước Lượng Độ Dốc Lorentz Có Trọng Số cho Một Lớp Phương Trình Elliptic Quasilinear với Dữ Liệu Đo Đạc

Fengping Yao1
1Department of Mathematics, Shanghai University, Shanghai, China

Tóm tắt

Trong bài báo này, chúng tôi thu được các ước lượng độ dốc Lorentz có trọng số cục bộ như sau: $$\begin{aligned} g^{-1}\left( {\mathcal {M}}_1(\mu ) \right) \in L_{w,{\text {loc}}}^{q,r}(\Omega ) \Longrightarrow |Du| \in L_{w,{\text {loc}}}^{q,r}(\Omega ) \end{aligned}$$ cho các nghiệm yếu của một lớp các phương trình elliptic quasilinear không đồng nhất với dữ liệu đo đạc $$\begin{aligned} -\text {div} ~\! \left( a\left( \left| \nabla u \right| \right) \nabla u \right) = \mu , \end{aligned}$$ trong đó $$g(t)= t a(t)$$ với $$t\ge 0$$ và $$\begin{aligned} {\mathcal {M}}_1(\mu )(x):=\sup _{r>0}\frac{r|\mu |(B_r(x))}{|B_r(x)|}, \quad x\in {\mathbb {R}}^{n}. \end{aligned}$$ Hơn nữa, chúng tôi nhận thấy rằng hai ví dụ tự nhiên và đơn giản của các hàm g(t) trong công trình này là $$\begin{aligned} g(t)=t^{p-1} ~~(p\text{-Laplace } \text{ phương trình) }~~~~~~ \text{ và } ~~~~~~ g(t)=t^{p-1 }\log ^\alpha \big ( 1+t\big ) \quad \text{ cho }~\alpha > 0. \end{aligned}$$ Thực tế, ví dụ tổng quát và thú vị hơn có liên quan đến điều kiện tăng trưởng (p, q) bằng cách ghép nối thích hợp các đa thức. Chúng tôi nhận thấy rằng các kết quả của chúng tôi cải thiện các kết quả đã biết cho các phương trình như vậy.

Từ khóa

#Gradient Lorentz #phương trình elliptic quasilinear #dữ liệu đo đạc #ước lượng trọng số

Tài liệu tham khảo

Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

Adimurthi, K., Phuc, N.: Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. Partial Differ. Equ. 54(3), 3107–3139 (2015)

Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc Var Partial Differ. Equ. 53, 803–846 (2015)

Baroni, P.: Lorentz estimates for degenerate and singular evolutionary systems. J. Differ. Equ. 255(9), 2927–2951 (2013)

Baroni, P., Habermann, J.: Calderón–Zygmund estimates for parabolic measure data equations. J. Differ. Equ. 252(1), 412–447 (2012)

Baroni, P., Lindfors, C.: The Cauchy–Dirichlet problem for a general class of parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(3), 593–624 (2017)

Boccardo, L.: Elliptic and parabolic differential problems with measure data, Boll. Unione. Mat. Ital. Sez. A (7) 11, 439–461(1997)

Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Comm. Part. Differ. Equ. 17, 641–655 (1992)

Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

Bögelein, V., Duzaar, F., Gianazza, U.: Continuity estimates for porous medium type equations with measure data. J. Funct. Anal. 267(9), 3351–3396 (2014)

Bögelein, V., Duzaar, F., Gianazza, U.: Porous medium type equations with measure data and potential estimates. SIAM J. Math. Anal. 45(6), 3283–3330 (2013)

Bui, T., Duong, X.: Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains. Calc. Var. Part. Differ. Equ. 56(2)(2017), Art. 47, 24 pp

Byun, S., Cho, Y.: Nonlinear gradient estimates for generalized elliptic equations with nonstandard growth in nonsmooth domains. Nonlinear Anal. 140, 145–165 (2016)

Byun, S., Kwon, H., So, H., Wang, L.: Nonlinear gradient estimates for elliptic equations in quasiconvex domains. Calc. Var. Partial Differ. Equ. 54(2), 1425–1453 (2015)

Byun, S., Lee, M.: Weighted estimates for nondivergence parabolic equations in Orlicz spaces. J. Funct. Anal. 269(8), 2530–2563 (2015)

Byun, S., Ok, J., Park, J.: Regularity estimates for quasilinear elliptic equations with variable growth involving measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1639–1667 (2017)

Byun, S., Palagachev, D.K., Ryu, S.: Weighted \(W^{1, p}\) estimates for solutions of nonlinear parabolic equations over non-smooth domains. Bull. Lond. Math. Soc. 45(4), 765–778 (2013)

Byun, S., Wang, L., Zhou, S.: Nonlinear elliptic equations with small BMO coefficients in Reifenberg domains. J. Funct. Anal. 250(1), 167–196 (2007)

Byun, S., Youn, Y.: Riesz potential estimates for a class of double phase problems. J. Differ. Equ. 264, 1263–1316 (2018)

Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51, 1–21 (1998)

Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations, American Mathematical Society, 43. Providense, RI (1995)

Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control. Optim. 31, 993–1006 (1993)

Casas, E., de los Reyes, J., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19, 616–643 (2008)

Cho, Y.: Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators. J. Differ. Equ. 264(10), 6152–6190 (2018)

Cianchi, A., Maz’ya, V.: Global Lipschitz regularity for a class of quasilinear elliptic equations. Comm. Partial Differ. Equ. 36(1), 100–133 (2011)

Cianchi, A., Maz’ya, V.: Global boundedness of the gradient for a class of nonlinear elliptic systems. Arch. Ration. Mech. Anal. 212(1), 129–177 (2014)

Cianchi, A., Maz’ya, V.: Gradient regularity via rearrangements for \(p\)-Laplacian type elliptic boundary value problems. J. Eur. Math. Soc. 16(3), 571–595 (2014)

Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20(3), 523–556 (2008)

Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133(4), 1093–1149 (2011)

Duzaar, F., Mingione, G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259(11), 2961–2998 (2010)

Duzaar, F., Mingione, G.: Gradient continuity estimates. Calc. Var. Partial Differ. Equ. 39(3–4), 379–418 (2010)

Evans, L.C.: A new proof of local \(C^{1,\alpha }\) regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 45(3), 356–373 (1982)

Fan, X.: Global \(C^{1,\alpha }\) regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235(2), 397–417 (2007)

Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 19, 591–613 (1992)

Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)

Kinnumen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Comm. Partial Differ. Equ. 24(11–12), 2043–2068 (1999)

Kuusi, T., Mingione, G.: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. 16(4), 835–892 (2014)

Kuusi, T., Mingione, G.: Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal. 212(3), 727–780 (2014)

Kuusi, T., Mingione, G.: Guide to nonlinear potential estimates. Bull. Math. Sci. 4(1), 1–82 (2014)

Kuusi, T., Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207(1), 215–246 (2013)

Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Comm. Partial Differ. Equ. 16, 311–361 (1991)

Malý, J.: Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals. Manuscr. Math. 110(4), 513–525 (2003)

Mengesha, T., Phuc, N.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250(5), 2485–2507 (2011)

Mengesha, T., Phuc, N.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189–216 (2012)

Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)

Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010)

Peskin, C.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

Phuc, N.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)

Stein, E.: Harmonic Analysis. Princeton University Press, Princeton, NJ (1993)

Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, (1986)

Trudinger, N., Wang, X.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124, 369–410 (2002)

Yao, F., Zhou, S.: Calderón-Zygmund estimates for a class of quasilinear elliptic equations. J. Funct. Anal. 272, 1524–1552 (2017)