Weighted Energy Estimates for the Incompressible Navier–Stokes Equations and Applications to Axisymmetric Solutions Without Swirl
Tóm tắt
We consider a family of weights which permit to generalize the Leray procedure to obtain weak suitable solutions of the 3D incompressible Navier–Stokes equations with initial data in weighted
$$L^2$$
spaces. Our principal result concerns the existence of regular global solutions when the initial velocity is an axisymmetric vector field without swirl such that both the initial velocity and its vorticity belong to
$$L^2 ( (1+ r^2)^{-\frac{\gamma }{2}} dx ) $$
, with
$$r= \sqrt{x_1^2 + x_2^2}$$
and
$$\gamma \in (0, 2) $$
.
Tài liệu tham khảo
Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences Book Series, vol. 183. Springer, New York (2012)
Bradshaw, Z., Tsai, T.P.: Discretely self-similar solutions to the Navier–Stokes equations with data in \(L^2_{{\rm loc}}\). Anal. PDE 12, 1943–1962 (2019)
Bradshaw, Z., Kukavica, I., Tsai, T.P.: Existence of global weak solutions to the Navier–Stokes equations in weighted spaces. To appear in Indiana Univ. Math. J
Bradshaw, Z., Tsai, T.P.: On the local pressure expansion for the Navier–Stokes equations (2020). Preprint arXiv:2001.11526v1
Calderón, C.: Existence of weak solutions for the Navier–Stokes equations with initial data in \({L}^p\). Trans. Am. Math. Soc. 318, 179–207 (1990)
Chae, D., Wolf, J.: Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in \(L^2_{{\rm loc}}({\mathbb{R}}^3)\). Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 1019–1039 (2018)
Dong, H., Gu, X.: Boundary partial regularity for the high dimensional Navier–Stokes equations. J. Funct. Anal. 267, 2606–2637 (2014)
Fernández-Dalgo, P.G., Jarrín, O.: Discretely self-similar solutions for 3D MHD equations and global weak solutions in weighted \(L^2\) spaces. J. Math. Fluid Mech. 23, 1–30 (2021)
Fernández-Dalgo, P.G., Jarrín, O.: Weak-strong uniqueness in weighted \(L^2\) spaces and weak suitable solutions in local Morrey spaces for the MHD equations. J. Differ. Equ. 271, 864–915 (2021)
Fernández-Dalgo, P.G., Lemarié-Rieusset, P.G.: Weak solutions for Navier–Stokes equations with initial data in weighted \(L^2\) spaces. Arch. Ration. Mech. Anal. 237, 347–382 (2020)
Fernández-Dalgo, P.G., Lemarié–Rieusset, P.G.: Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space. Discrete Contin. Dyn. Syst. 14, 2917–2931 (2021)
Grafakos, L.: Classical Harmonic Analysis. Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)
Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)
Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196, 233–265 (2014)
Ladyzhenskaya, O.: Unique solvability in the large of a three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry. Zap. Nauchn. Sem. LOMI 7, 155–177 (1968)
Lemarié-Rieusset, P.G.: Quelques remarques sur les équations de Navier–Stokes dans \({\mathbb{R}}^3\). Séminaire X-EDP, Exposé n. IX (1997–1998)
Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. CRC, Boca Raton (2002)
Lemarié-Rieusset, P.G.: The Navier–Stokes problem in the 21st century. CRC Press, Boca Raton (2016)
Leonardi, S., Málek, J., Nec̆as, J., Pokorný, M.: On the Axially Symmetric Flows in \({\mathbb{R}}^3\). J. Anal. Its Appl. 18(3), 639–649 (1999)
Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)
Seregin, G., Šverák, V.: On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large \(L^3\) initial initial data. Nonlinear Anal. 154, 269–296 (2017)
Wang, Y., Wu, G.: A unified proof on the partial regularity for suitable weak solutions of non- stationary and stationary Navier–Stokes equations. J. Differ. Equ. 256, 1224–1249 (2014)
Wu, B.: Partially regular weak solutions of the Navier–Stokes equations in \({\mathbb{R}}^4 \times [0, + \infty [\). Arch. Ration. Mech. Anal. 239, 1771–1808 (2021)