Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation

Journal of Medical Internet Research - Tập 23 Số 7 - Trang e27633
András Lánczky1,2, Balázs Györffy1,2
1Department of Bioinformatics, Semmelweis University, Budapest, Hungary
2TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary

Tóm tắt

Background Survival analysis is a cornerstone of medical research, enabling the assessment of clinical outcomes for disease progression and treatment efficiency. Despite its central importance, no commonly used spreadsheet software can handle survival analysis and there is no web server available for its computation. Objective Here, we introduce a web-based tool capable of performing univariate and multivariate Cox proportional hazards survival analysis using data generated by genomic, transcriptomic, proteomic, or metabolomic studies. Methods We implemented different methods to establish cut-off values for the trichotomization or dichotomization of continuous data. The false discovery rate is computed to correct for multiple hypothesis testing. A multivariate analysis option enables comparing omics data with clinical variables. Results We established a registration-free web-based survival analysis tool capable of performing univariate and multivariate survival analysis using any custom-generated data. Conclusions This tool fills a gap and will be an invaluable contribution to basic medical and clinical research.

Từ khóa


Tài liệu tham khảo

10.1371/journal.pone.0157989

10.1093/bib/bbx159

10.32614/rj-2016-042

10.1371/journal.pone.0051862

10.1016/j.chest.2020.03.010

10.2307/2281868

10.1111/j.2517-6161.1972.tb00899.x

10.1530/ERC-11-0329

10.1007/s10549-016-4013-7

Therneau, TM, 2000, Modeling survival data: extending the Cox model

Survplot2021-07-07http://www.cbs.dtu.dk/~eklund/survplot

BeeSwarm2021-07-07http://www.cbs.dtu.dk/~eklund/beeswarm/

Wickham, H, 2009, ggplot2: elegant graphics for data analysis, 10.1007/978-0-387-98141-3

10.1111/j.2517-6161.1995.tb02031.x

Kaplan-Meier plotter with custom data2021-07-02https://kmplot.com/custom_data

10.2196/16084

10.1016/j.otohns.2010.05.007

10.3389/fgene.2019.00624

10.2147/cmar.s163432

10.1371/journal.pone.0081699

10.1002/sim.4780141510

10.1080/19466315.2017.1369899

10.1016/S0140-6736(09)60569-9

10.1038/nature11412

10.2307/3001616

10.1093/jnci/22.4.719

10.1093/biomet/52.3-4.650

10.1093/biomet/57.3.579