Wearable sensors based on colloidal nanocrystals
Tóm tắt
In recent times, wearable sensors have attracted significant attention in various research fields and industries. The rapid growth of the wearable sensor related research and industry has led to the development of new devices and advanced applications such as bio-integrated devices, wearable health care systems, soft robotics, and electronic skins, among others. Nanocrystals (NCs) are promising building blocks for the design of novel wearable sensors, due to their solution processability and tunable properties. In this paper, an overview of NC synthesis, NC thin film fabrication, and the functionalization of NCs for wearable applications (strain sensors, pressure sensors, and temperature sensors) are provided. The recent development of NC-based strain, pressure, and temperature sensors is reviewed, and a discussion on their strategies and operating principles is presented. Finally, the current limitations of NC-based wearable sensors are discussed, in addition to methods to overcome these limitations.
Tài liệu tham khảo
W. Gao, S. Emaminejad, H.Y.Y.N. Yein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.H. Lien, G.A. Brooks, R.W. Davis, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.-J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, J. Kim, J.S. Ha, Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28, 748–756 (2016). https://doi.org/10.1002/adma.201504335
J. Park, J. Kim, K. Kim, S.-Y. Kim, W.H. Cheong, K. Park, J.H. Song, G. Namgoong, J.J. Kim, J. Heo, F. Bien, J.-U. Park, Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8, 10591–10597 (2016). https://doi.org/10.1039/C6NR01468B
M.S. Kang, H. Joh, H. Kim, H.-W. Yun, D. Kim, H.K. Woo, W.S. Lee, S.-H. Hong, S.J. Oh, Synergetic effects of ligand exchange and reduction process enhancing both electrical and optical properties of Ag nanocrystals for multifunctional transparent electrodes. Nanoscale 10, 18415–18422 (2018). https://doi.org/10.1039/C8NR05212C
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t
D.-H. Kim, R. Ghaffari, N. Lu, J.A. Rogers, Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150018
M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26, 375501 (2015). https://doi.org/10.1088/0957-4484/26/37/375501
N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012). https://doi.org/10.1002/adfm.201200498
C.-J. Lee, K.H. Park, C.J. Han, M.S. Oh, B. You, Y.-S. Kim, J.-W. Kim, Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Sci. Rep. 7, 7959 (2017). https://doi.org/10.1038/s41598-017-08484-y
S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.-H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010). https://doi.org/10.1038/nmat2834
S. Xu, Y. Zhang, L. Jia, K.E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y.J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, J.A. Rogers, Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014). https://doi.org/10.1126/science.1250169
W. Honda, S. Harada, T. Arie, S. Akita, K. Takei. Printed wearable temperature sensor for health monitoring. In: SENSORS, 2014 IEEE, 2227–2229 (2014). https://doi.org/10.1109/icsens.2014.6985483
T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. 102, 12321–12325 (2005). https://doi.org/10.1073/pnas.0502392102
T.Q. Trung, S. Ramasundaram, B.-U. Hwang, N.-E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016). https://doi.org/10.1002/adma.201504441
M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, Y. Zhang, Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27, 1606066 (2017). https://doi.org/10.1002/adfm.201606066
S. Park, H. Kim, M. Vosgueritchian, S. Cheon, H. Kim, J.H. Koo, T.R. Kim, S. Lee, G. Schwartz, H. Chang, Z. Bao, Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26, 7324–7332 (2014). https://doi.org/10.1002/adma.201402574
C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey, User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013). https://doi.org/10.1038/nmat3711
J. Yang, D. Wei, L. Tang, X. Song, W. Luo, J. Chu, T. Gao, H. Shi, C. Du, Wearable temperature sensor based on graphene nanowalls. RSC Adv. 5, 25609–25615 (2015). https://doi.org/10.1039/C5RA00871A
L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, Q. Fu, Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl. Mater. Interfaces 5, 5815–5824 (2013). https://doi.org/10.1021/am401402x
L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
D.-H. Kim, J.-H. Ahn, M.C. Won, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). https://doi.org/10.1126/science.1154367
Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A.R. Kirmani, J.-P. Sun, J. Minor, K.W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O.M. Bakr, E.H. Sargent, Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014). https://doi.org/10.1038/nmat4007
J.-S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011). https://doi.org/10.1038/nnano.2011.46
Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, M. Law, Dependence of carrier mobility on nanocrystal size and ligand length in pbse nanocrystal solids. Nano Lett. 10, 1960–1969 (2010). https://doi.org/10.1021/nl101284k
D.S. Chung, J.-S. Lee, J. Huang, A. Nag, S. Ithurria, D.V. Talapin, Low voltage, hysteresis free, and high mobility transistors from All-inorganic colloidal nanocrystals. Nano Lett. 12, 1813–1820 (2012). https://doi.org/10.1021/nl203949n
H. Shen, H. Wang, Z. Tang, J.Z. Niu, S. Lou, Z. Du, L.S. Li, High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm 11, 1733–1738 (2009). https://doi.org/10.1039/B909063K
S. Sapra, A.L. Rogach, J. Feldmann, Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil. J. Mater. Chem. 16, 3391–3395 (2006). https://doi.org/10.1039/B607022A
Z. Deng, L. Cao, F. Tang, B. Zou, A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. J. Phys. Chem. B 109, 16671–16675 (2005). https://doi.org/10.1021/jp052484x
E.A. Gaulding, B.T. Diroll, E.D. Goodwin, Z.J. Vrtis, C.R. Kagan, C.B. Murray, Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 27, 2846–2851 (2015). https://doi.org/10.1002/adma.201405575
M.J. Greaney, E. Couderc, J. Zhao, B.A. Nail, M. Mecklenburg, W. Thornbury, F.E. Osterloh, S.E. Bradforth, R.L. Brutchey, Controlling the trap state landscape of colloidal CdSe nanocrystals with cadmium halide ligands. Chem. Mater. 27, 744–756 (2015). https://doi.org/10.1021/cm503529j
S.J. Oh, N.E. Berry, J.-H. Choi, E.A. Gaulding, H. Lin, T. Paik, B.T. Diroll, S. Muramoto, C.B. Murray, C.R. Kagan, Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 14, 1559–1566 (2014). https://doi.org/10.1021/nl404818z
D.M. Kroupa, G.F. Pach, M. Vörös, F. Giberti, B.D. Chernomordik, R.W. Crisp, A.J. Nozik, J.C. Johnson, R. Singh, V.I. Klimov, G. Galli, M.C. Beard, Enhanced multiple exciton generation in PbS|CdS janus-like heterostructured nanocrystals. ACS Nano 12, 10084–10094 (2018). https://doi.org/10.1021/acsnano.8b04850
K. Lu, Y. Wang, Z. Liu, L. Han, G. Shi, H. Fang, J. Chen, X. Ye, S. Chen, F. Yang, A.G. Shulga, T. Wu, M. Gu, S. Zhou, J. Fan, M.A. Loi, W. Ma, High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “solvent-curing”. Adv. Mater. 30, 1707572 (2018). https://doi.org/10.1002/adma.201707572
J.-H. Choi, S.J. Oh, Y. Lai, D.K. Kim, T. Zhao, A.T. Fafarman, B.T. Diroll, C.B. Murray, C.R. Kagan, In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air. ACS Nano 7, 8275–8283 (2013). https://doi.org/10.1021/nn403752d
Y. Wang, K. Lu, L. Han, Z. Liu, G. Shi, H. Fang, S. Chen, T. Wu, F. Yang, M. Gu, S. Zhou, X. Ling, X. Tang, J. Zheng, M.A. Loi, W. Ma, In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 30, 1704871 (2018). https://doi.org/10.1002/adma.201704871
W.S. Lee, D. Kim, B. Park, H. Joh, H.K. Woo, Y.-K. Hong, T. Kim, D.-H. Ha, S.J. Oh, Multiaxial and transparent strain sensors based on synergetically reinforced and orthogonally cracked hetero-nanocrystal solids. Adv. Funct. Mater. 29, 1806714 (2019). https://doi.org/10.1002/adfm.201806714
M. Segev-Bar, H. Haick, Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013). https://doi.org/10.1021/nn402728g
N. Olichwer, E.W. Leib, A.H. Halfar, A. Petrov, T. Vossmeyer, Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS Appl. Mater. Interfaces 4, 6151–6161 (2012). https://doi.org/10.1021/am301780b
H. Moreira, J. Grisolia, N.M. Sangeetha, N. Decorde, C. Farcau, B. Viallet, K. Chen, G. Viau, L. Ressier, Electron transport in gold colloidal nanoparticle-based strain gauges. Nanotechnology 24, 095701 (2013). https://doi.org/10.1088/0957-4484/24/9/095701
M. Segev-Bar, A. Landman, M. Nir-Shapira, G. Shuster, H. Haick, Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. ACS Appl. Mater. Interfaces 5, 5531–5541 (2013). https://doi.org/10.1021/am400757q
D. Ryu, K.J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, A.M. Gusman, In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing. Smart Struct. Syst. 8, 471–486 (2011). https://doi.org/10.12989/sss.2011.8.5.471
E. Skotadis, D. Mousadakos, K. Katsabrokou, S. Stathopoulos, D. Tsoukalas, Flexible polyimide chemical sensors using platinum nanoparticles. Sensors Actuators B Chem. 189, 106–112 (2013). https://doi.org/10.1016/j.snb.2013.01.046
C.M. Guédon, J. Zonneveld, H. Valkenier, J.C. Hummelen, S.J. Van Der Molen, Controlling the interparticle distance in a 2D molecule-nanoparticle network. Nanotechnology 22, 125205 (2011). https://doi.org/10.1088/0957-4484/22/12/125205
J. Herrmann, K.H. Müller, T. Reda, G.R. Baxter, B. Raguse, G.J.J.B. De Groot, R. Chai, M. Roberts, L. Wieczorek, Nanoparticle films as sensitive strain gauges. Appl. Phys. Lett. 91, 183105 (2007). https://doi.org/10.1063/1.2805026
A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 18–52 (2000). https://doi.org/10.1002/1439-7641(20000804)1:1%3c18:AID-CPHC18%3e3.0.CO;2-L
B. Radha, A.A. Sagade, G.U. Kulkarni, Flexible and semitransparent strain sensors based on micromolded Pd nanoparticle–carbon μ-stripes. ACS Appl. Mater. Interfaces 3, 2173–2178 (2011). https://doi.org/10.1021/am2002873
M. Seong, S.-W. Lee, H. Joh, W.S. Lee, T. Paik, S.J. Oh, Designing highly conductive and stable silver nanocrystal thin films with tunable work functions through solution-based surface engineering with gold coating process. J. Alloys Compd. 698, 400–409 (2017). https://doi.org/10.1016/j.jallcom.2016.12.157
H. Joh, S.-W. Lee, M. Seong, W.S. Lee, S.J. Oh, Engineering the charge transport of Ag nanocrystals for highly accurate, wearable temperature sensors through all-solution processes. Small 13, 1700247 (2017). https://doi.org/10.1002/smll.201700247
S.-W. Lee, H. Joh, M. Seong, W.S. Lee, J.-H. Choi, S.J. Oh, Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes. J. Mater. Chem. C 5, 2442–2450 (2017). https://doi.org/10.1039/C7TC00230K
H. Kim, S.-W. Lee, H. Joh, M. Seong, W.S. Lee, M.S. Kang, J.B. Pyo, S.J. Oh, Chemically designed metallic/insulating hybrid nanostructures with silver nanocrystals for highly sensitive wearable pressure sensors. ACS Appl. Mater. Interfaces 10, 1389–1398 (2018). https://doi.org/10.1021/acsami.7b15566
K.I. Arshak, F. Ansari, D. Collins, R. Perrem, Characterisation of a thin-film/thick-film strain gauge sensor on stainless steel. Mater. Sci. Eng. B 26, 13–17 (1994). https://doi.org/10.1016/0921-5107(94)90180-5
J.L. Tanner, D. Mousadakos, K. Giannakopoulos, E. Skotadis, D. Tsoukalas, High strain sensitivity controlled by the surface density of platinum nanoparticles. Nanotechnology 23, 285501 (2012). https://doi.org/10.1088/0957-4484/23/28/285501
C. Farcau, N.M. Sangeetha, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines, L. Ressier, High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 5, 7137–7143 (2011). https://doi.org/10.1021/nn201833y
C. Farcau, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines, C. Amiens, L. Ressier, Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing. J. Phys. Chem. C 115, 14494–14499 (2011). https://doi.org/10.1021/jp202166s
N.M. Sangeetha, N. Decorde, B. Viallet, G. Viau, L. Ressier, Nanoparticle-based strain gauges fabricated by convective self assembly: strain sensitivity and hysteresis with respect to nanoparticle sizes. J. Phys. Chem. C 117, 1935–1940 (2013). https://doi.org/10.1021/jp310077r
J. Yin, P. Hu, J. Luo, L. Wang, M.F. Cohen, C.-J. Zhong, Molecularly mediated thin film assembly of nanoparticles on flexible devices: electrical conductivity versus device strains in different gas/vapor environment. ACS Nano 5, 6516–6526 (2011). https://doi.org/10.1021/nn201858c
B. Park, J. Kim, D. Kang, C. Jeong, K.S. Kim, J.U. Kim, P.J. Yoo, T.-I. Kim, Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 28, 8130–8137 (2016). https://doi.org/10.1002/adma.201602425
W.S. Lee, S.-W. Lee, H. Joh, M. Seong, H. Kim, M.S. Kang, K.-H. Cho, Y.-M. Sung, S.J. Oh, Designing metallic and insulating nanocrystal heterostructures to fabricate highly sensitive and solution processed strain gauges for wearable sensors. Small 13, 1702534 (2017). https://doi.org/10.1002/smll.201702534
J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park, S. Ryu, I. Park, A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6, 11932–11939 (2014). https://doi.org/10.1039/C4NR03295K
P. Zhang, H. Bousack, Y. Dai, A. Offenhäusser, D. Mayer, Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties. Nanoscale 10, 992–1003 (2018). https://doi.org/10.1039/C7NR07912E
B.J. Last, D.J. Thouless, Percolation theory and electrical conductivity. Phys. Rev. Lett. 27, 1719 (1971). https://doi.org/10.1103/PhysRevLett.27.1719
T. Das Gupta, T. Gacoin, A.C.H. Rowe, Piezoresistive properties of Ag/silica nano-composite thin films close to the percolation threshold. Adv. Funct. Mater. 24, 4522–4527 (2014). https://doi.org/10.1002/adfm.201303775
S.-W. Lee, H. Joh, M. Seong, W.S. Lee, J.-H. Choi, S.J. Oh, Transition states of nanocrystal thin films during ligand-exchange processes for potential applications in wearable sensors. ACS Appl. Mater. Interfaces 10, 25502–25510 (2018). https://doi.org/10.1021/acsami.8b06754
M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuat. A Phys. 110, 142–149 (2004). https://doi.org/10.1016/j.sna.2003.08.006
V. Maheshwari, R.F. Saraf, High-resolution thin film device to sense texture by touch. Science 312, 1501–1504 (2006). https://doi.org/10.1126/science.1126216
N.T. Tien, S. Jeon, D.-I. Kim, T.Q. Trung, M. Jang, B.-U. Hwang, K.-E. Byun, J. Bae, E. Lee, J.B.-H. Tok, Z. Bao, N.-E. Lee, J.-J. Park, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26, 796–804 (2014). https://doi.org/10.1002/adma.201302869
Y. Zang, F. Zhang, C.-A. Di, D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140–156 (2015). https://doi.org/10.1039/C4MH00147H
B.S. Kang, J. Kim, S. Jang, F. Ren, J.W. Johnson, R.J. Therrien, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthicum, S.N.G. Chu, K. Baik, B.P. Gila, C.R. Abernathy, S.J. Pearton, Capacitance pressure sensor based on GaN high-electron-mobility transistor-on-Si membrane. Appl. Phys. Lett. 86, 253502 (2005). https://doi.org/10.1063/1.1952568
S.E. Zhu, M. Krishna Ghatkesar, C. Zhang, G.C.A.M. Janssen, Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102, 161904 (2013). https://doi.org/10.1063/1.4802799
G. Schwartz, B.C.-K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
C.-L. Choong, M.-B. Shim, B.-S. Lee, S. Jeon, D.S. Ko, T.-H. Kang, J. Bae, S.H. Lee, K.-E. Byun, J. Im, Y.J. Jeong, C.E. Park, J.-J. Park, U.-I. Chung, Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451–3458 (2014). https://doi.org/10.1002/adma.201305182
Y. Zhang, R.C. Webb, H. Luo, Y. Xue, J. Kurniawan, N.H. Cho, S. Krishnan, Y. Li, Y. Huang, J.A. Rogers, Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv. Healthc. Mater. 5, 119–127 (2016). https://doi.org/10.1002/adhm.201500110
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
M. Segev-Bar, N. Bachar, Y. Wolf, B. Ukrainsky, L. Sarraf, H. Haick, Multi-parametric sensing platforms based on nanoparticles. Adv. Mater. Technol. 2, 1600206 (2017). https://doi.org/10.1002/admt.201600206
S. Harada, W. Honda, T. Arie, S. Akita, K. Takei, Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 8, 3921–3927 (2014). https://doi.org/10.1021/nn500845a
J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim, J. Wang, J. Kim, Wearable sensors: modalities, challenges, and prospects. Lab. Chip 18, 217–248 (2018). https://doi.org/10.1039/C7LC00914C
S. Yao, A. Myers, A. Malhotra, F. Lin, A. Bozkurt, J.F. Muth, Y. Zhu, A wearable hydration sensor with conformal nanowire electrodes. Adv. Healthc. Mater. 6, 1601159 (2017). https://doi.org/10.1002/adhm.201601159
M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 9, 3421–3427 (2015). https://doi.org/10.1021/acsnano.5b01478
Z. Lou, L. Li, L. Wang, G. Shen, Recent progress of self-powered sensing systems for wearable electronics. Small 13, 1701791 (2017). https://doi.org/10.1002/smll.20170179
M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi, C. Park, S.J. Kim, S.I. Chae, T.-H. Kim, J.H. Kim, T. Hyeon, D.-H. Kim, Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015). https://doi.org/10.1038/ncomms8149
Y. Wang, I. Fedin, H. Zhang, D.V. Talapin, Direct optical lithography of functional inorganic nanomaterials. Science 357, 385 (2017). https://doi.org/10.1126/science.aan2958