Wearable-basierte Detektion von Arrhythmien

Springer Science and Business Media LLC - Tập 15 - Trang 341-353 - 2021
Christian Veltmann1, Joachim R. Ehrlich2, Ulrich M. Gassner3, Benjamin Meder4, Martin Möckel5, Peter Radke6, Eberhard Scholz7, Hendrik Schneider8, Christoph Stellbrink9,10, David Duncker1
1Hannover Herzrhythmus Centrum, Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Deutschland
2Medizinische Klinik 1, St. Josefs Hospital, Wiesbaden, Deutschland
3Forschungsstelle für E-Health-Recht (FEHR), Universität Augsburg, Augsburg, Deutschland
4Klinik für Innere Med. III, Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
5Notfall- und Akutmedizin, Zentrale Notaufnahmen mit Chest Pain Units, Campus Mitte und Virchow, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
6Klinik für Innere Medizin und Kardiologie, Schön Klinik Neustadt, Neustadt, Deutschland
7Innere Medizin I, GRN-Klinik Schwetzingen, Kardiologie, Schwetzingen, Deutschland
8Kanzlei für Wirtschafts- und Medizinstrafrecht, Wiesbaden, Deutschland
9Klinik für Kardiologie und Internistische Intensivmedizin, Klinikum Bielefeld gGmbH, Bielefeld, Deutschland
10Kommission für Klinische Kardiovaskuläre Medizin, Deutsche Gesellschaft für Kardiologie, Düsseldorf, Deutschland

Tóm tắt

Der technische Fortschritt in der Medizin hat dazu geführt, dass Herzfrequenz und Herzrhythmus nicht nur mittels professioneller Geräte aufgezeichnet werden können, sondern dies inzwischen auch vom Laien durch von jedermann erwerbbare sog. Wearables möglich ist. Unter Wearables versteht man direkt am Körper oder der Kleidung getragene elektronische Geräte, die in der Lage sind, biophysikalische Daten zu erheben. Zu den bekanntesten Wearables zählen Smartwatches, Armbänder und Brustgurte. Wearables sind in der Lage, Herzfrequenz, Pulskurven und das EKG zu erfassen. So können Wearables als Eventrekorder mit Symptom-getriggerter Aufzeichnung von Arrhythmien oder zum aktiven oder passiven Screening auf Vorhofflimmern genutzt werden. Dazu stehen prinzipiell 2 Verfahren zur Verfügung: die Elektrokardiographie und die Photoplethysmographie. Mit beiden Verfahren ist es inzwischen möglich, Software-unterstützt mit einer hohen Sensitivität und Spezifität Vorhofflimmern zu identifizieren. Ziel dieses Positionspapiers ist es, einen Überblick zur aktuellen Datenlage und zum Einsatz der Wearables bei der Detektion von symptomatischen und asymptomatischen Arrhythmien zu geben. Zusätzlich werden gesundheitsökonomische und auch rechtliche Aspekte im Umgang mit Wearables beleuchtet.

Tài liệu tham khảo

Andrade JG, Godin R, Nault I (2020) Large-scale implementation of a pragmatic atrial fibrillation screening program in Canadian community practice. Pacing Clin Electrophysiol 43:768–769. https://doi.org/10.1111/pace.13966 Bansal A, Joshi R (2018) Portable out-of-hospital electrocardiography: a review of current technologies. J Arrhythmia 34:129–138. https://doi.org/10.1002/joa3.12035 Barrett PM, Komatireddy R, Haaser S et al (2014) Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med 127(95):e11–95.e17. https://doi.org/10.1016/j.amjmed.2013.10.003 Behzadi A, Shamloo AS, Mouratis K et al (2020) Feasibility and reliability of smartwatch to obtain 3‑lead electrocardiogram recordings. Sensors 20:5074. https://doi.org/10.3390/s20185074 Bonomi AG, Schipper F, Eerikäinen LM et al (2018) Atrial fibrillation detection using a novel cardiac ambulatory monitor based on photo-plethysmography at the wrist. J Am Heart Assoc 7:e9351. https://doi.org/10.1161/jaha.118.009351 Brasier N, Raichle CJ, Dörr M et al (2018) Detection of atrial fibrillation with a smartphone camera: first prospective, international, two-centre, clinical validation study (DETECT AF PRO). Europace 21:41–47. https://doi.org/10.1093/europace/euy176 Castelletti S, Dagradi F, Goulene K et al (2018) A wearable remote monitoring system for the identification of subjects with a prolonged QT interval or at risk for drug-induced long QT syndrome. Int J Cardiol 266:89–94. https://doi.org/10.1016/j.ijcard.2018.03.097 Chan P, Wong C, Poh YC et al (2016) Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.003428 Choi W, Kim S‑H, Lee W et al (2020) Comparison of continuous ECG monitoring by wearable patch device and conventional telemonitoring device. J Korean Med Sci 35:e363. https://doi.org/10.3346/jkms.2020.35.e363 Couderc J‑P, Kyal S, Mestha LK et al (2015) Detection of atrial fibrillation using contactless facial video monitoring. Heart Rhythm 12:195–201. https://doi.org/10.1016/j.hrthm.2014.08.035 Diederichsen SZ, Haugan KJ, Kronborg C et al (2020) Comprehensive evaluation of rhythm monitoring strategies in screening for atrial fibrillation. Circulation 141:1510–1522. https://doi.org/10.1161/circulationaha.119.044407 Ding EY, Svennberg E, Wurster C et al (2020) Survey of current perspectives on consumer-available digital health devices for detecting atrial fibrillation. Cardiovasc Digit Health J 1:21–29. https://doi.org/10.1016/j.cvdhj.2020.06.002 Duncker D, Ding WY, Etheridge S et al (2021) Smart wearables for cardiac monitoring—real-world use beyond atrial fibrillation. Sensors 21:2539. https://doi.org/10.3390/s21072539 Eerikinen LM, Bonomi AG, Schipper F et al (2019) Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data. IEEE J Biomed Health Inform 24:1610–1618. https://doi.org/10.1109/jbhi.2019.2950574 Elgendi M, Eskofier B, Dokos S, Abbott D (2014) Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS One 9:e84018. https://doi.org/10.1371/journal.pone.0084018 Fallet S, Lemay M, Renevey P et al (2019) Can one detect atrial fibrillation using a wrist-type photoplethysmographic device? Med Biol Eng Comput 57:477–487. https://doi.org/10.1007/s11517-018-1886-0 Fouassier D, Roy X, Blanchard A, Hulot J (2020) Assessment of signal quality measured with a smart 12-lead ECG acquisition T‑shirt. Ann Noninvasive Electrocardiol 25:e12682. https://doi.org/10.1111/anec.12682 Freedman B, Schnabel R, Calkins H (2019) Opportunistic electrocardiogram screening for atrial fibrillation to prevent stroke. JAMA Cardiol 4:54–55. https://doi.org/10.1001/jamacardio.2018.4335 Fukuma N, Hasumi E, Fujiu K et al (2019) Feasibility of a T-shirt-type wearable electrocardiography monitor for detection of covert atrial fibrillation in young healthy adults. Sci Rep 9:11768. https://doi.org/10.1038/s41598-019-48267-1 Gawalko M, Duncker D, Manninger M et al (2021) The European TeleCheck-AF project on remote app-based management of atrial fibrillation during the COVID-19 pandemic: centre and patient experiences. Europace. https://doi.org/10.1093/europace/euaa394 Gillinov S, Etiwy M, Wang R et al (2017) Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc 49:1697–1703. https://doi.org/10.1249/mss.0000000000001284 Godin R, Yeung C, Baranchuk A et al (2019) Screening for atrial fibrillation using a mobile, single-lead electrocardiogram in Canadian primary care clinics. Can J Cardiol 35:840–845. https://doi.org/10.1016/j.cjca.2019.03.024 Goldenthal IL, Sciacca RR, Riga T et al (2019) Recurrent atrial fibrillation/flutter detection after ablation or cardioversion using the AliveCor KardiaMobile device: iHEART results. J Cardiovasc Electrophysiol 30:2220–2228. https://doi.org/10.1111/jce.14160 Guo Y, Wang H, Zhang H et al (2019) Mobile photoplethysmographic technology to detect atrial fibrillation. J Am Coll Cardiol 74:2365–2375. https://doi.org/10.1016/j.jacc.2019.08.019 Haberman ZC, Jahn RT, Bose R et al (2015) Wireless smartphone ECG enables large-scale screening in diverse populations. J Cardiovasc Electrophysiol 26:520–526. https://doi.org/10.1111/jce.12634 Halcox JPJ, Wareham K, Cardew A et al (2017) Assessment of remote heart rhythm sampling using the AliveCor heart monitor to screen for atrial fibrillation. Circulation 136:1784–1794. https://doi.org/10.1161/circulationaha.117.030583 Han JK, Al-Khatib SM, Albert CM (2020) Changes in the digital health landscape in cardiac electrophysiology: a pre- and peri-pandemic COVID-19 era survey. Cardiovasc Digit Health J. https://doi.org/10.1016/j.cvdhj.2020.12.001 Heo NJ, Rhee SY, Waalen J, Steinhubl S (2020) Chronic kidney disease and undiagnosed atrial fibrillation in individuals with diabetes. Cardiovasc Diabetol 19:157. https://doi.org/10.1186/s12933-020-01128-y Hermans ANL, Velden RMJ, Gawalko M et al (2020) On-demand mobile health infrastructures to allow comprehensive remote atrial fibrillation and risk factor management through teleconsultation. Clin Cardiol 43:1232–1239. https://doi.org/10.1002/clc.23469 Hindricks G, Potpara T, Dagres N et al (2020) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association of cardio-thoracic surgery (EACTS). Eur Heart J. https://doi.org/10.1093/eurheartj/ehaa612 Jaakkola J, Virtanen R, Vasankari T et al (2017) Self-detection of atrial fibrillation in an aged population: three-year follow-up of the LietoAF intervention study. BMC Geriatr 17:218. https://doi.org/10.1186/s12877-017-0607-0 Kaleschke G, Hoffmann B, Drewitz I et al (2009) Prospective, multicentre validation of a simple, patient-operated electrocardiographic system for the detection of arrhythmias and electrocardiographic changes. Europace 11:1362–1368. https://doi.org/10.1093/europace/eup262 Kearley K, Selwood M, den Bruel AV et al (2014) Triage tests for identifying atrial fibrillation in primary care: a diagnostic accuracy study comparing single-lead ECG and modified BP monitors. BMJ Open 4:e4565. https://doi.org/10.1136/bmjopen-2013-004565 Koshy AN, Sajeev JK, Nerlekar N et al (2018) Smart watches for heart rate assessment in atrial arrhythmias. Int J Cardiol 266:124–127. https://doi.org/10.1016/j.ijcard.2018.02.073 Lau JK, Lowres N, Neubeck L et al (2013) iphone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke. Int J Cardiol 165:193–194. https://doi.org/10.1016/j.ijcard.2013.01.220 Li X, Tse VC, Au-Doung LW et al (2016) The impact of ischaemic stroke on atrial fibrillation-related healthcare cost: a systematic review. Europace. https://doi.org/10.1093/europace/euw093 Lowres N, Mulcahy G, Gallagher R et al (2016) Self-monitoring for atrial fibrillation recurrence in the discharge period post-cardiac surgery using an iPhone electrocardiogram. Eur J Cardiothorac Surg 50:44–51. https://doi.org/10.1093/ejcts/ezv486 Lowres N, Neubeck L, Salkeld G et al (2014) Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. Thromb Haemost 111:1167–1176. https://doi.org/10.1160/th14-03-0231 Manninger M, Kosiuk J, Zweiker D et al (2020) Role of wearable rhythm recordings in clinical decision making—the wEHRables project. Clin Cardiol 43:1032–1039. https://doi.org/10.1002/clc.23404 Manninger M, Zweiker D, Svennberg E et al (2021) Current perspectives on wearable rhythm recordings for clinical decision-making: the wEHRAbles 2 survey. Europace. https://doi.org/10.1093/europace/euab064 McManus DD, Lee J, Maitas O et al (2013) A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation. Heart Rhythm 10:315–319. https://doi.org/10.1016/j.hrthm.2012.12.001 Muhlestein JB, Anderson JL, Bethea CF et al (2020) Feasibility of combining serial smartphone single-lead electrocardiograms for the diagnosis of ST-elevation myocardial infarction. Am Heart J 221:125–135. https://doi.org/10.1016/j.ahj.2019.12.016 Murali S, Brugger N, Rincon F et al (2020) Cardiac ambulatory monitoring: new wireless device validated against conventional Holter monitoring in a case series. Front Cardiovasc Med 7:587945. https://doi.org/10.3389/fcvm.2020.587945 Nemati S, Ghassemi MM, Ambai V et al (2016) Monitoring and detecting atrial fibrillation using wearable technology. Annu Int Conf IEEE Eng Med Biol Soc 2016:3394–3397. https://doi.org/10.1109/embc.2016.7591456 Nguyen HH, Hare GFV, Rudokas M et al (2015) SPEAR trial: smartphone pediatric ElectrocARdiogram trial. PLoS ONE 10:e136256. https://doi.org/10.1371/journal.pone.0136256 Orchard J, Lowres N, Freedman SB et al (2016) Screening for atrial fibrillation during influenza vaccinations by primary care nurses using a smartphone electrocardiograph (iECG): a feasibility study. Eur J Prev Cardiol 23:13–20. https://doi.org/10.1177/2047487316670255 Paradkar N, Chowdhury SR (2017) Cardiac arrhythmia detection using photoplethysmography. Annu Int Conf IEEE Eng Med Biol Soc 2017:113–116. https://doi.org/10.1109/embc.2017.8036775 Perez MV, Mahaffey KW, Hedlin H et al (2019) Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 381:1909–1917. https://doi.org/10.1056/nejmoa1901183 Pluymaekers NAHA, Hermans ANL, van der Velden RMJ et al (2020) Implementation of an on-demand app-based heart rate and rhythm monitoring infrastructure for the management of atrial fibrillation through teleconsultation: TeleCheck-AF. Europace. https://doi.org/10.1093/europace/euaa201 Polania LF, Mestha LK, Huang DT, Couderc J‑P (2015) Method for classifying cardiac arrhythmias using photoplethysmography. Annu Int Conf IEEE Eng Med Biol Soc 2015:6574–6577. https://doi.org/10.1109/embc.2015.7319899 Proesmans T, Mortelmans C, Haelst RV et al (2019) Mobile phone–based use of the photoplethysmography technique to detect atrial fibrillation in primary care: diagnostic accuracy study of the Fibricheck app. JMIR Mhealth Uhealth 7:e12284. https://doi.org/10.2196/12284 Quer G, Freedman B, Steinhubl SR (2020) Screening for atrial fibrillation: predicted sensitivity of short, intermittent electrocardiogram recordings in an asymptomatic at-risk population. Europace 22:euaa186. https://doi.org/10.1093/europace/euaa186 Rosenberg MA, Samuel M, Thosani A, Zimetbaum PJ (2013) Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing Clin Electrophysiol 36:328–333. https://doi.org/10.1111/pace.12053 Samol A, Bischof K, Luani B et al (2019) Single-lead ECG recordings including Einthoven and wilson leads by a smartwatch: a new era of patient directed early ECG differential diagnosis of cardiac diseases? Sensors 19:4377. https://doi.org/10.3390/s19204377 Sarkar S, Ritscher D, Mehra R (2008) A detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Trans Biomed Eng 55:1219–1224. https://doi.org/10.1109/tbme.2007.903707 Scholz EP, Kehrle F, Vossel S et al (2014) Discriminating atrial flutter from atrial fibrillation using a multilevel model of atrioventricular conduction. Heart Rhythm 11:877–884. https://doi.org/10.1016/j.hrthm.2014.02.013 Siontis KC, Gersh BJ, Killian JM et al (2016) Typical, atypical, and asymptomatic presentations of new-onset atrial fibrillation in the community: characteristics and prognostic implications. Heart Rhythm 13:1418–1424. https://doi.org/10.1016/j.hrthm.2016.03.003 Sološenko A, Petrėnas A, Marozas V (2015) Photoplethysmography-based method for automatic detection of premature ventricular contractions. IEEE Trans Biomed Circuits Syst 9:662–669. https://doi.org/10.1109/tbcas.2015.2477437 Spaich S, Kern H, Zelniker TA et al (2020) Feasibility of CardioSecur®, a mobile 4‑electrode/22-lead ECG device, in the prehospital emergency setting. Front Cardiovasc Med 7:551796. https://doi.org/10.3389/fcvm.2020.551796 Steinberg C, Philippon F, Sanchez M et al (2019) A novel wearable device for continuous ambulatory ECG recording: proof of concept and assessment of signal quality. Biosensors 9:17. https://doi.org/10.3390/bios9010017 Taggar JS, Coleman T, Lewis S et al (2015) Accuracy of methods for detecting an irregular pulse and suspected atrial fibrillation: a systematic review and meta-analysis. Eur J Prev Cardiol 23:1330–1338. https://doi.org/10.1177/2047487315611347 Tison GH, Sanchez JM, Ballinger B et al (2018) Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol 3:409. https://doi.org/10.1001/jamacardio.2018.0136 Turakhia MP, Hoang DD, Zimetbaum P et al (2013) Diagnostic utility of a novel leadless arrhythmia monitoring device. Am J Cardiol 112:520–524. https://doi.org/10.1016/j.amjcard.2013.04.017 Varma N, Marrouche NF, Aguinaga L et al (2020) HRS/EHRA/APHRS/LAHRS/ACC/AHA worldwide practice update for telehealth and arrhythmia monitoring during and after a pandemic. Europace 23:euaa187. https://doi.org/10.1093/europace/euaa187 Verbrugge FH, Proesmans T, Vijgen J et al (2019) Atrial fibrillation screening with photo-plethysmography through a smartphone camera. Europace 21:1167–1175. https://doi.org/10.1093/europace/euz119 Wang R, Blackburn G, Desai M et al (2016) Accuracy of wrist-worn heart rate monitors. JAMA Cardiol 2:104. https://doi.org/10.1001/jamacardio.2016.3340 Yan BP, Lai WHS, Chan CKY et al (2018) Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmographic signals. J Am Heart Assoc. https://doi.org/10.1161/jaha.118.008585 Yan BP, Lai WHS, Chan CKY et al (2020) High-throughput, contact-free detection of atrial fibrillation from video with deep learning. JAMA Cardiol 5:105–107. https://doi.org/10.1001/jamacardio.2019.4004 Zaprutko T, Zaprutko J, Baszko A et al (2019) Feasibility of atrial fibrillation screening with mobile health technologies at pharmacies. J Cardiovasc Pharmacol Ther 25:142–151. https://doi.org/10.1177/1074248419879089 Zink MD, Mischke KG, Keszei AP et al (2020) Screen-detected atrial fibrillation predicts mortality in elderly subjects. Europace 23:euaa190. https://doi.org/10.1093/europace/euaa190