Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub‐ and super‐geometric analysis to Geometry‐Independent Field approximaTion (GIFT)

International Journal for Numerical Methods in Engineering - Tập 114 Số 10 - Trang 1131-1159 - 2018
Elena Atroshchenko1, Satyendra Tomar2, Gang Xu3, Stéphane Bordas2,4
1Department of Mechanical Engineering, University of Chile. Santiago, Chile
2Institute of Computational Engineering, Faculty of Sciences Communication and Technology, University of Luxembourg, Luxembourg City, Luxembourg
3Hangzhou Dianzi University, Hangzhou, China
4Institute of Mechanics and Advanced Materials, School of Engineering, Cardiff University, Cardiff, UK

Tóm tắt

SummaryThis paper presents an approach to generalize the concept of isogeometric analysis by allowing different spaces for the parameterization of the computational domain and for the approximation of the solution field. The method inherits the main advantage of isogeometric analysis, ie, preserves the original exact computer‐aided design geometry (for example, given by nonuniform rational B‐splines), but allows pairing it with an approximation space, which is more suitable/flexible for analysis, for example, T‐splines, LR‐splines, (truncated) hierarchical B‐splines, and PHT‐splines. This generalization offers the advantage of adaptive local refinement without the need to reparameterize the domain, and therefore without weakening the link with the computer‐aided design model. We demonstrate the use of the method with different choices of geometry and field spaces and show that, despite the failure of the standard patch test, the optimum convergence rate is achieved for nonnested spaces.

Từ khóa


Tài liệu tham khảo

10.1016/j.cma.2004.10.008

Reali A, 2006, An isogeometric analysis approach for the study of structural vibrations, J Earthquake Eng, 10, 1, 10.1080/13632460609350626

10.1007/s00466-008-0315-x

10.1016/j.cma.2009.05.011

10.1002/nme.3121

10.1201/b18725

10.1016/j.cma.2011.08.008

Lian H, 2013, Stress analysis without meshing: isogeometric boundary‐element method, Eng Comput Mech, 166, 88

10.1016/j.cma.2012.11.001

10.1016/j.ijsolstr.2010.03.004

10.1002/nme.5149

10.1016/j.cma.2016.11.012

10.1007/s10704-016-0153-3

PengX.Isogeometric Boundary Element Methods for Linear Elastic Fracture Mechanics. Technical Report.Luxembourg City Luxembourg:University of Luxembourg;2016.http://orbilu.uni.lu/handle/10993/25835

10.1016/j.cma.2016.05.038

10.1016/j.compgeo.2016.06.004

10.1016/j.cma.2013.10.026

KhajahT AntoineX BordasS.Isogeometric finite element analysis of time‐harmonic exterior acoustic scattering problems;2016.https://arxiv.org/abs/1610.01694

10.1016/j.cma.2009.12.002

10.1016/j.matcom.2015.05.008

LianH BordasS SevillaR SimpsonR.Recent developments in CAD/analysis integration;2012.https://arxiv.org/abs/1210.8216

10.1007/s00466-013-0955-3

10.1016/j.cma.2016.06.022

10.1016/j.cagd.2015.03.005

10.1016/j.cad.2012.10.022

10.1016/j.cma.2012.03.017

10.1016/j.cma.2014.09.035

10.1016/j.cma.2014.12.010

10.1016/j.cma.2016.03.035

10.1016/j.cma.2016.11.007

10.1016/j.cma.2017.08.005

10.1007/s11425-015-5063-8

10.1145/378456.378512

10.1016/j.cma.2011.09.004

10.1016/j.cagd.2012.03.025

10.1016/j.cma.2015.11.002

10.1145/882262.882295

10.1145/1015706.1015715

10.1142/S0218202513500231

10.1016/j.cagd.2015.06.007

10.1016/j.cma.2011.02.005

10.1016/j.cagd.2016.05.010

10.1016/j.cma.2011.11.022

10.1016/j.gmod.2008.03.001

10.1016/j.cma.2011.01.018

10.1016/j.cad.2011.08.026

10.1016/j.cma.2017.06.008

10.1006/jath.1996.3079

10.1016/j.cagd.2016.02.009

10.1002/nme.1620150203

PieglL TillerW.The NURBS Book.Berlin Germany:Springer;1997.

ZienkiewiczO TaylorR ZhuJ.The Finite Element Method: Its Basis and Fundamentals.Waltham MA:Elsevier;2013.

10.1142/S0218202506001455

10.1002/9781118032824