Weak dynamical threshold for the “strict homeostasis” assumption in ecological stoichiometry

Ecological Modelling - Tập 384 - Trang 233-240 - 2018
Hao Wang1, Zexian Lu2, Aditya Raghavan1
1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
2School of Mathematical Sciences, Nankai University, Tianjin 300071, China

Tài liệu tham khảo

Acharya, 2004, Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis, Limnol. Oceanogr., 49, 656, 10.4319/lo.2004.49.3.0656 Alijani, 2015, Modeling the bacterial contribution to planktonic community respiration in the regulation of solar energy and nutrient availability, Ecol. Complex., 23, 25, 10.1016/j.ecocom.2015.05.002 Andersen, 1997 Bratbak, 1985, Phytoplankton–bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism, Mar. Ecol. Prog. Ser., 25, 23, 10.3354/meps025023 Deng, 2007, Competitive coexistence in stoichiometric chaos, Chaos, 17, 033108, 10.1063/1.2752491 DeMott, 1998, Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna, Limnol. Oceanogr., 43, 1147, 10.4319/lo.1998.43.6.1147 Elser, 1999, The stoichiometry of consumer-driven nutrient recycling: theory, observations and consequences, Ecology, 80, 735, 10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2 Grover, 2003, The impact of variable stoichiometry on predator–prey interactions: a multinutrient approach, Am. Nat., 162, 29, 10.1086/376577 Hessen, 1997, A model approach to planktonic stoichiometry and consumer-resource stability, Freshw. Biol., 38, 447, 10.1046/j.1365-2427.1997.00224.x Hood, 2010, Diet mixing: do animals integrate growth or resources across temporal heterogeneity?, Am. Nat., 176, 651, 10.1086/656489 Loladze, 2000, Stoichiometry in producer–grazer systems: linking energy flow with element cycling, Bull. Math. Biol., 62, 1137, 10.1006/bulm.2000.0201 Loladze, 2004, Coexistence of two predators on one prey mediated by stoichiometry, Theor. Popul. Biol., 65, 1, 10.1016/S0040-5809(03)00105-9 Mulder, 2007, Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia, Ecol. Model., 202, 427, 10.1016/j.ecolmodel.2006.11.007 Mulder, 2007, Modeling the dynamics of nutrient limited consumer populations using constant elasticity production functions, Ecol. Model., 207, 319, 10.1016/j.ecolmodel.2007.05.009 Muller, 2001, Stoichiometric food quality and herbivore dynamics, Ecol. Lett., 4, 519, 10.1046/j.1461-0248.2001.00240.x Peace, 2014, Dynamics of a producer–grazer model incorporating the effects of excess food nutrient content on grazer's growth, Bull. Math. Biol., 76, 2175, 10.1007/s11538-014-0006-z Persson, 2010, To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs, Oikos, 119, 741, 10.1111/j.1600-0706.2009.18545.x Sterner, 2002 Wang, 2007, Dynamics of stoichiometric bacteria–algae interactions in the epilimnion, SIAM J. Appl. Math., 68, 503, 10.1137/060665919 Wang, 2008, Dynamics of a mechanistically derived stoichiometric producer–grazer model, J. Biol. Dyn., 2, 286, 10.1080/17513750701769881 Wang, 2009, Daphnia species invasion, competitive exclusion, and chaotic coexistence, DCDS-B, 12, 481, 10.3934/dcdsb.2009.12.481 Wang, 2010, Revisit brown lemming population cycles in Alaska: examination of stoichiometry, IJNAM-B, 1, 93 Wang, 2012, On the “strict homeostasis” assumption in ecological stoichiometry, Ecol. Model., 243, 81, 10.1016/j.ecolmodel.2012.06.003