Weak dynamical threshold for the “strict homeostasis” assumption in ecological stoichiometry
Tài liệu tham khảo
Acharya, 2004, Biological stoichiometry of Daphnia growth: an ecophysiological test of the growth rate hypothesis, Limnol. Oceanogr., 49, 656, 10.4319/lo.2004.49.3.0656
Alijani, 2015, Modeling the bacterial contribution to planktonic community respiration in the regulation of solar energy and nutrient availability, Ecol. Complex., 23, 25, 10.1016/j.ecocom.2015.05.002
Andersen, 1997
Bratbak, 1985, Phytoplankton–bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism, Mar. Ecol. Prog. Ser., 25, 23, 10.3354/meps025023
Deng, 2007, Competitive coexistence in stoichiometric chaos, Chaos, 17, 033108, 10.1063/1.2752491
DeMott, 1998, Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna, Limnol. Oceanogr., 43, 1147, 10.4319/lo.1998.43.6.1147
Elser, 1999, The stoichiometry of consumer-driven nutrient recycling: theory, observations and consequences, Ecology, 80, 735, 10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2
Grover, 2003, The impact of variable stoichiometry on predator–prey interactions: a multinutrient approach, Am. Nat., 162, 29, 10.1086/376577
Hessen, 1997, A model approach to planktonic stoichiometry and consumer-resource stability, Freshw. Biol., 38, 447, 10.1046/j.1365-2427.1997.00224.x
Hood, 2010, Diet mixing: do animals integrate growth or resources across temporal heterogeneity?, Am. Nat., 176, 651, 10.1086/656489
Loladze, 2000, Stoichiometry in producer–grazer systems: linking energy flow with element cycling, Bull. Math. Biol., 62, 1137, 10.1006/bulm.2000.0201
Loladze, 2004, Coexistence of two predators on one prey mediated by stoichiometry, Theor. Popul. Biol., 65, 1, 10.1016/S0040-5809(03)00105-9
Mulder, 2007, Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia, Ecol. Model., 202, 427, 10.1016/j.ecolmodel.2006.11.007
Mulder, 2007, Modeling the dynamics of nutrient limited consumer populations using constant elasticity production functions, Ecol. Model., 207, 319, 10.1016/j.ecolmodel.2007.05.009
Muller, 2001, Stoichiometric food quality and herbivore dynamics, Ecol. Lett., 4, 519, 10.1046/j.1461-0248.2001.00240.x
Peace, 2014, Dynamics of a producer–grazer model incorporating the effects of excess food nutrient content on grazer's growth, Bull. Math. Biol., 76, 2175, 10.1007/s11538-014-0006-z
Persson, 2010, To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs, Oikos, 119, 741, 10.1111/j.1600-0706.2009.18545.x
Sterner, 2002
Wang, 2007, Dynamics of stoichiometric bacteria–algae interactions in the epilimnion, SIAM J. Appl. Math., 68, 503, 10.1137/060665919
Wang, 2008, Dynamics of a mechanistically derived stoichiometric producer–grazer model, J. Biol. Dyn., 2, 286, 10.1080/17513750701769881
Wang, 2009, Daphnia species invasion, competitive exclusion, and chaotic coexistence, DCDS-B, 12, 481, 10.3934/dcdsb.2009.12.481
Wang, 2010, Revisit brown lemming population cycles in Alaska: examination of stoichiometry, IJNAM-B, 1, 93
Wang, 2012, On the “strict homeostasis” assumption in ecological stoichiometry, Ecol. Model., 243, 81, 10.1016/j.ecolmodel.2012.06.003