Sự hội tụ yếu của các phương pháp lặp để giải các bất đẳng thức biến thiên quasy-monoton

Computational Optimization and Applications - Tập 77 Số 2 - Trang 491-508 - 2020
Liu, Hongwei1, Yang, Jun1,2
1School of Mathematics and Statistics, Xidian University, Xi’an, China
2School of Mathematics and Information Science, Xianyang Normal University, Xianyang, China

Tóm tắt

Trong công trình này, chúng tôi giới thiệu các phương pháp tự thích ứng để giải các bất đẳng thức biến thiên với ánh xạ liên tục Lipschitz và có tính quasy-monoton (hoặc ánh xạ liên tục Lipschitz mà không có tính đơn điệu) trong không gian Hilbert thực. Dưới các giả thuyết thích hợp, sự hội tụ của các thuật toán được thiết lập mà không cần kiến thức về hằng số Lipschitz của ánh xạ. Các kết quả thu được trong bài báo này mở rộng một số kết quả gần đây trong tài liệu. Một số thí nghiệm số sơ bộ và so sánh cũng được báo cáo.

Từ khóa

#bất đẳng thức biến thiên #ánh xạ quasy-monoton #hội tụ yếu #không gian Hilbert thực #phương pháp tự thích ứng

Tài liệu tham khảo

citation_journal_title=J. Optim. Theory Appl.; citation_title=Pseudo-monotone complementarity problems in Hilbert space; citation_author=RW Cottle, JC Yao; citation_volume=75; citation_publication_date=1992; citation_pages=281-295; citation_doi=10.1007/BF00941468; citation_id=CR1 citation_journal_title=Comput. Optim. Appl.; citation_title=A double projection method for solving variational inequalities without monotonicity; citation_author=ML Ye, YR He; citation_volume=60; citation_publication_date=2015; citation_pages=141-150; citation_doi=10.1007/s10589-014-9659-7; citation_id=CR2 citation_journal_title=J. Optim. Theory Appl.; citation_title=An interior proximal method for a class of quasimonotone variational inequalities; citation_author=N Langenberg; citation_volume=155; citation_publication_date=2012; citation_pages=902-922; citation_doi=10.1007/s10957-012-0111-9; citation_id=CR3 citation_journal_title=J. Optim. Theory Appl.; citation_title=Interior proximal algorithm for quasiconvex programming problems and variational inequalities with linear constraints; citation_author=AS Brito, JX Cruz Neto, JO Lopes, PR Oliveira; citation_volume=154; citation_publication_date=2012; citation_pages=217-234; citation_doi=10.1007/s10957-012-0002-0; citation_id=CR4 citation_journal_title=Ekonomika i Matematicheskie Metody; citation_title=The extragradient method for finding saddle points and other problem; citation_author=GM Korpelevich; citation_volume=12; citation_publication_date=1976; citation_pages=747-756; citation_id=CR5 citation_journal_title=Appl. Math. Comput.; citation_title=Some developments in general variational inequalities; citation_author=MA Noor; citation_volume=152; citation_publication_date=2004; citation_pages=199-277; citation_id=CR6 citation_journal_title=J. Optim. Theory Appl.; citation_title=The subgradient extragradient method for solving variational inequalities in Hilbert space; citation_author=Y Censor, A Gibali, S Reich; citation_volume=148; citation_publication_date=2011; citation_pages=318-335; citation_doi=10.1007/s10957-010-9757-3; citation_id=CR7 citation_journal_title=SIAM J. Control Optim.; citation_title=A modified forward-backward splitting method for maximal monotone mapping; citation_author=P Tseng; citation_volume=38; citation_publication_date=2000; citation_pages=431-446; citation_doi=10.1137/S0363012998338806; citation_id=CR8 citation_journal_title=SIAM J. Control Optim.; citation_title=A new projection method for monotone variational inequalities; citation_author=MV Solodov, BF Svaiter; citation_volume=37; citation_publication_date=1999; citation_pages=765-776; citation_doi=10.1137/S0363012997317475; citation_id=CR9 citation_journal_title=SIAM J. Optim.; citation_title=Projected reflected gradient methods for variational inequalities; citation_author=YuV Malitsky; citation_volume=25; citation_issue=1; citation_publication_date=2015; citation_pages=502-520; citation_doi=10.1137/14097238X; citation_id=CR10 citation_title=Finite-Dimensional Variational Inequalities and Complementarity problem; citation_publication_date=2003; citation_id=CR11; citation_author=F Facchinei; citation_author=J-S Pang; citation_publisher=Springer citation_journal_title=Optimization; citation_title=A variant of Korpelevich’s method for variational inequalities with a new search strategy; citation_author=AN Iusem, BF Svaiter; citation_volume=42; citation_publication_date=1997; citation_pages=309-321; citation_doi=10.1080/02331939708844365; citation_id=CR12 citation_journal_title=Numer. Algorithm; citation_title=Weak and strong convergence throrems for variational inequality problems; citation_author=VT Duong, VH Dang; citation_volume=78; citation_issue=4; citation_publication_date=2018; citation_pages=1045-1060; citation_doi=10.1007/s11075-017-0412-z; citation_id=CR13 citation_journal_title=SIAM J. Control Optim.; citation_title=A hybrid extragradient-viscosity method for monotone operators and fixed point problems; citation_author=F Mainge; citation_volume=47; citation_publication_date=2008; citation_pages=1499-1515; citation_doi=10.1137/060675319; citation_id=CR14 citation_journal_title=J. Global Optim.; citation_title=Inertial projection and contraction algorithms for variational inequalities; citation_author=QL Dong, YJ Cho, L Zhong, TM Rassias; citation_volume=70; citation_issue=3; citation_publication_date=2018; citation_pages=687-704; citation_doi=10.1007/s10898-017-0506-0; citation_id=CR15 citation_journal_title=J. Optim. Theory Appl.; citation_title=Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert space; citation_author=K Rapeepan, S Satit; citation_volume=163; citation_publication_date=2014; citation_pages=399-412; citation_doi=10.1007/s10957-013-0494-2; citation_id=CR16 citation_journal_title=Numer. Algorithm; citation_title=Strong convergence result for monotone variational inequalities; citation_author=S Yekini, SI Olaniyi; citation_volume=76; citation_publication_date=2017; citation_pages=259-282; citation_doi=10.1007/s11075-016-0253-1; citation_id=CR17 citation_journal_title=Ekonomika i Matematicheskie Metody; citation_title=On a method for convex programs using a symmetrical modification of the Lagrange function; citation_author=AS Antipin; citation_volume=12; citation_issue=6; citation_publication_date=1976; citation_pages=1164-1173; citation_id=CR18 citation_journal_title=Numer. Algorithm; citation_title=Strong convergence result for solving monotone variational inequalities in Hilbert space; citation_author=J Yang, HW Liu; citation_volume=80; citation_publication_date=2019; citation_pages=741-752; citation_doi=10.1007/s11075-018-0504-4; citation_id=CR19 citation_journal_title=Optimization; citation_title=Modified subgradient extragradient algorithms for solving monotone variational inequalities; citation_author=J Yang, HW Liu, ZX Liu; citation_volume=67; citation_issue=12; citation_publication_date=2018; citation_pages=2247-2258; citation_doi=10.1080/02331934.2018.1523404; citation_id=CR20 citation_journal_title=J. Optim. Theory Appl.; citation_title=A modified projected gradient method for monotone variational inequalities; citation_author=J Yang, HW Liu; citation_volume=179; citation_issue=1; citation_publication_date=2018; citation_pages=197-211; citation_doi=10.1007/s10957-018-1351-0; citation_id=CR21 citation_journal_title=J. Optim. Theory Appl.; citation_title=On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities; citation_author=TV Phan; citation_volume=176; citation_publication_date=2018; citation_pages=399-409; citation_doi=10.1007/s10957-017-1214-0; citation_id=CR22 citation_journal_title=USSR Comput. Math. Math. Phys.; citation_title=Modification of the extra-gradient method for solving variational inequalities and certain optimization problems; citation_author=EN Khobotov; citation_volume=27; citation_publication_date=1987; citation_pages=120-127; citation_doi=10.1016/0041-5553(87)90058-9; citation_id=CR23 citation_journal_title=Var. Anal. Appl.; citation_title=Numerical solution for pseudomonotone variational inequality problems by extragradient methods; citation_author=F Tinti; citation_volume=79; citation_publication_date=2004; citation_pages=1101-1128; citation_id=CR24 citation_journal_title=Comput. Optim. Appl.; citation_title=Modified extragradient-like algorithms with new stepsizes for variational inequalities; citation_author=DV Hieu, PK Anh, LD Muu; citation_volume=73; citation_publication_date=2019; citation_pages=913-932; citation_doi=10.1007/s10589-019-00093-x; citation_id=CR25 Hieu, D.V., Cho, Y.J., Xiao, Y.-B.: Golden ratio algorithms with new stepsize rules for variational inequalities. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5703 citation_journal_title=Comput. Appl. Math.; citation_title=Strong convergence of extragradient methods with a new step size for solving variational inequality problems; citation_author=DV Thong, DV Hieu; citation_volume=38; citation_publication_date=2019; citation_pages=136; citation_doi=10.1007/s40314-019-0899-0; citation_id=CR27 citation_journal_title=Comput. Optim. Appl.; citation_title=A cutting plane method for solving quasimonotone variational inequalities; citation_author=P Marcotte, DL Zhu; citation_volume=20; citation_publication_date=2001; citation_pages=317-324; citation_doi=10.1023/A:1011219303531; citation_id=CR28 citation_journal_title=J. Comput. Math.; citation_title=A new step-size skill for solving a class of nonlinear equations; citation_author=DF Sun; citation_volume=13; citation_publication_date=1995; citation_pages=357-368; citation_id=CR29