Weak and strong solvability of parabolic variational inequalities in Banach spaces
Tóm tắt
We consider parabolic variational inequalities having the strong formulation
                  (1)
                  
                    
                  
                  $$
\left\{ {\begin{array}{*{20}c}
  {\left\langle {u'(t),\,v - \left. {u(t)} \right\rangle + \left\langle {Au(t),} \right.\,v - \left. {u(t)} \right\rangle + \Phi (v) - \Phi (u(t) \geq 0,} \right.} \\
  {\forall v \in V^{**} ,\,a.e.\,t \geq 0,} \\
 \end{array} } \right.
$$
                 where
                  
                    
                  
                  % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI
% cacaaIWaGaaiykaiabg2da9iaadwhadaWgaaWcbaGaaGimaaqabaaa
% aa!3BE1!
                  $$u(0) = u_0 $$
                 for some admissible initial datum, V is a separable Banach space with separable dual
                  
                    
                  
                  % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaCa
% aaleqabaGaaiOkaaaakiaacYcacaWGbbGaaiOoaiaadAfadaahaaWc
% beqaaiaacQcacaGGQaaaaOGaeyOKH4QaamOvamaaCaaaleqabaGaai
% Okaaaaaaa!3FF3!
                  $$V^* ,A:V^{**} \to V^* $$
                 is an appropriate monotone operator, and
                  
                    
                  
                  % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaai
% OoaiaadAfadaahaaWcbeqaaiaacQcacaGGQaaaaOGaeyOKH46efv3y
% SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucqGHQi
% cYcaGG7bGaeyOhIuQaaiyFaaaa!4C4A!
                  $$\Phi :V^{**} \to \mathbb{R} \cup \{ \infty \} $$
                 is a convex,
                  
                    
                  
                  % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiaabw
% gacaqGHbGaae4AamaaCaaaleqabaGaaiOkaaaaaaa!3A7D!
                  $${\text{weak}}^* $$
                 lower semicontinuous functional. Well-posedness of (1) follows from an explicit construction of the related semigroup
                  
                    
                  
                  % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX!
% MathType!MTEF!2!1!+-
% feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4Eaiaado
% facaGGOaGaamiDaiaacMcacaGG6aGaamiDaiabgwMiZkaaicdacaGG
% 9bGaaiOlaaaa!4001!
                  $$\{ S(t):t \geq 0\} .$$
                 Illustrative applications to free boundary problems and to parabolic problems in Orlicz-Sobolev spaces are given.
