Weak and strong solvability of parabolic variational inequalities in Banach spaces

Journal of Evolution Equations - Tập 4 - Trang 497-517 - 2004
Matthew Rudd1,2
1Department of Mathematics, University of Utah, Salt Lake City, USA
2Department of Mathematics, University of Texas at Austin, Austin

Tóm tắt

We consider parabolic variational inequalities having the strong formulation (1) $$ \left\{ {\begin{array}{*{20}c} {\left\langle {u'(t),\,v - \left. {u(t)} \right\rangle + \left\langle {Au(t),} \right.\,v - \left. {u(t)} \right\rangle + \Phi (v) - \Phi (u(t) \geq 0,} \right.} \\ {\forall v \in V^{**} ,\,a.e.\,t \geq 0,} \\ \end{array} } \right. $$ where % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI % cacaaIWaGaaiykaiabg2da9iaadwhadaWgaaWcbaGaaGimaaqabaaa % aa!3BE1! $$u(0) = u_0 $$ for some admissible initial datum, V is a separable Banach space with separable dual % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaCa % aaleqabaGaaiOkaaaakiaacYcacaWGbbGaaiOoaiaadAfadaahaaWc % beqaaiaacQcacaGGQaaaaOGaeyOKH4QaamOvamaaCaaaleqabaGaai % Okaaaaaaa!3FF3! $$V^* ,A:V^{**} \to V^* $$ is an appropriate monotone operator, and % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaai % OoaiaadAfadaahaaWcbeqaaiaacQcacaGGQaaaaOGaeyOKH46efv3y % SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucqGHQi % cYcaGG7bGaeyOhIuQaaiyFaaaa!4C4A! $$\Phi :V^{**} \to \mathbb{R} \cup \{ \infty \} $$ is a convex, % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiaabw % gacaqGHbGaae4AamaaCaaaleqabaGaaiOkaaaaaaa!3A7D! $${\text{weak}}^* $$ lower semicontinuous functional. Well-posedness of (1) follows from an explicit construction of the related semigroup % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4Eaiaado % facaGGOaGaamiDaiaacMcacaGG6aGaamiDaiabgwMiZkaaicdacaGG % 9bGaaiOlaaaa!4001! $$\{ S(t):t \geq 0\} .$$ Illustrative applications to free boundary problems and to parabolic problems in Orlicz-Sobolev spaces are given.