Weak Stability of Centred Quadratic Stochastic Operators

Krzysztof Bartoszek1,2, Joachim Domsta3, Małgorzata Pułka4
1Department of Mathematics, Uppsala University, Uppsala, Sweden
2Department of Computer and Information Science, Linköping University, Linköping, Sweden
3The Krzysztof Brzeski Institute of Applied Informatics, The State University of Applied Sciences in Elbla̧g, Elbląg, Poland
4Department of Probability and Biomathematics, Gdańsk University of Technology, Gdańsk, Poland

Tóm tắt

We consider the weak convergence of iterates of so-called centred quadratic stochastic operators. These iterations allow us to study the discrete time evolution of probability distributions of vector-valued traits in populations of inbreeding or hermaphroditic species, whenever the offspring’s trait is equal to an additively perturbed arithmetic mean of the parents’ traits. It is shown that for the existence of a weak limit, it is sufficient that the distributions of the trait and the perturbation have a finite variance or have tails controlled by a suitable power function. In particular, probability distributions from the domain of attraction of stable distributions have found an application, although in general the limit is not stable.

Tài liệu tham khảo

Badocha, M., Bartoszek, W.: Quadratic stochastic operators on Banach lattices. Positivity (2017). https://doi.org/10.1007/s11117-017-0522-9 Bartoszek, K., Pułka, M.: Quadratic stochastic operators as a tool in modelling the dynamics of a distribution of a population trait. In: Proceedings of the Nineteenth National Conference on Applications of Mathematics in Biology and Medicine, Jastrzȩbia Góra, pp. 19–24 (2013) Bartoszek, K., Pułka, M.: Asymptotic properties of quadratic stochastic operators acting on the \(L^{1}\) space. Nonlinear Anal. Theory Methods Appl. 114, 26–39 (2015) Bartoszek, K., Pułka, M.: Prevalence problem in the set of quadratic stochastic operators acting on \(L^{1}\). Bull. Malays. Math. Sci. Soc. (2015). https://doi.org/10.1007/s40840-015-0245-7 Bartoszek, W., Pułka, M.: On mixing in the class of quadratic stochastic operators. Nonlinear Anal. Theory Methods Appl. 86, 95–113 (2013) Bernstein, S.N.: Solution of a mathematical problem related to the theory of inheritance (in Russian). Uch. Zap. N.-i.Kaf. Ukr. Ord. Mat. 1, 83–115 (1924) Borovkov, A.A.: Kurs teorii veroyatnostei (A Course in Probability Theory, in Russian). Nauka, Moscow (1972) Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010) Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling of Extremal Events for Insurance and Finance. Springer, Berlin (1997) Feller, W.: Introduction to Probability Theory and Its Applications, vol. II. Wiley, Hoboken (1966) Ganikhodjaev, N., Hamzah, N.Z.A.: On Poisson nonlinear transformations. Sci. World J. (2014). https://doi.org/10.1155/2014/832861 Ganikhodjaev, N., Jusoo, S.H.: On Lebesque nonlinear transformation with family of continuous measures. In: AIP Conference Proceedings, vol. 1830, p. 070012 (2017) Ganikhodjaev, N., Saburov, M., Nawi, A.M.: Mutation and chaos in nonlinear models of heredity. Sci. World J. (2014). https://doi.org/10.1155/2014/835069 Ganikhodjaev, N.N., Ganikhodjaev, R.N., Jamilov, U.U.: Quadratic stochastic operators and zero-sum game dynamics. Ergod. Theory Dyn. Syst. 35, 1443–1473 (2014) Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14(2), 270–335 (2011) Mukhamedov, F., Akin, H., Temir, S.: On infinite dimensional quadratic Volterra operators. J. Math. Anal. Appl. 310(2), 533–556 (2005) Mukhamedov, F., Ganikhodjaev, N.: Quantum Quadratic Operators and Processes. Lect. Notes Math. V., vol.2133. Springer, Berlin (2015) Rudnicki, R., Zwoleński, P.: Model of phenotypic evolution in hermaphroditic populations. J. Math. Biol. 70, 1295–1321 (2015) Shorack, G.R.: Probability for Statisticians. Springer, Berlin (2000) Ulam, S.M.: A Collection of Mathematical Problems. Interscience, Geneva (1960) Zwoleński, P.: Trait evolution in two-sex populations. Math. Mod. Nat. Phenom. 10(6), 163–181 (2015)