Weak Solutions to the Complex m-Hessian Equation on Open Subsets of $${{\mathbb {C}}}^{n}$$

Complex Analysis and Operator Theory - Tập 13 - Trang 4007-4025 - 2019
Le Mau Hai1, Vu Van Quan2
1Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam
2Hanoi Architectural University, Hanoi, Viet Nam

Tóm tắt

In this paper, we prove the existence of weak solutions to the complex m-Hessian equations in the class $${\mathcal {D}}_{m}(\Omega )$$ on an open subset $$\Omega $$ of $${\mathbb {C}}^n$$ . In the end of the paper we give an example shows that in the unit ball $${\mathbb {B}}^{2}(0,1)\subset {\mathbb {C}}^{2}$$ the complex Monge-Ampère equation $$(dd^{c} .)^{2}=\mu $$ is solvable but the complex Hessian equation $$H_{1}(.)=\mu $$ has not any weak solutions where $$\mu $$ is a nonnegative Radon measure on $${\mathbb {B}}^{2}(0,1)$$ .

Tài liệu tham khảo

Błocki, Z.: Weak solutions to the complex Hessian equation. Ann Inst Fourier (Grenoble) 55, 1735–1756 (2005) Chinh, L.H.: A variational approach to complex Hessian equation in \(\mathbb{C}^n\). J. Math. Anal. Appl. 431, 228–259 (2015) Li, S.Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8, 87–106 (2004) Dinew, S., Kołodziej, S.: A priori estimates for the complex Hessian equations. Anal. PDE 7, 227–244 (2014) Nguyen, N.C.: Subsolution theorem for the complex Hessian equation. Univ. Iag. Acta. Math. Fasciculus L 50, 69–88 (2012) Chinh, L.H.: Viscosity solutions to complex Hessian equations. J. Funct. Anal. 264, 1355–1379 (2013) Eyssidieux, P., Guedj, V., Zeriahi, A.: Viscosity solutions to degenerate complex Monge-Ampère equations. Commun. Pure Appl. Math. 64, 1059–1094 (2011) Wang, Y.A.: A viscosity approach to the Dirichlet problem for complex Monge-Ampère equations. Math. Z. 272, 497–513 (2012) Hung, V.V., Phu, V.N.: Hessian measures on \(m\)-polar sets and applications to the complex Hessian equations. Complex Var. Elliptic Equ. 8, 1135–1164 (2017) Åhag, P., Cegrell, U., Czyż, R., Pham, H.H.: Monge-Ampère measures on pluripolar sets. J. Math. Pures Appl. 92, 613–627 (2009) Błocki, Z.: The Complex Monge-Ampère Operator in Pluripotential Theory, Lecture Notes (unpublished). http://www.gamma.im.uj.edu.pl/~blocki (1998) Błocki, Z.: On the definition of the Monge-Ampère operator in \({\mathbb{C}}^{2}\). Math. Ann. 328, 415–423 (2004) Błocki, Z.: The domain of definition of the complex Monge-Ampère operator. Am. J. Math. 128, 519–530 (2006) Cegrell, U.: A general Dirichlet problem of the complex Monge-Apère operator. Ann. Polon. Math. 94(2), 131–147 (2008) Czyż, R.: On a Monge-Ampère type equation in the Cegrell class \({\cal{E}}_{\chi }\). Ann. Polon. Math. 99(1), 89–97 (2010) Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, vol. 44. Cambridge University Press, Cambridge (1995) Sadullaev, A.S., Abullaev, B.I.: Potential theory in the class of \(m\)-subharmonic functions. Proc. Steklov Inst. Math. 279(1), 155–180 (2012) Hai, L.M., Trao, N.V., Hong, N.X.: The complex Monge-Ampère equation in unbounded hyperconvex domains in \({\mathbb{C}}^{n}\). Complex Var. Elliptic Equ. 59(12), 1758–1774 (2014) Hai, L.M., Thuy, T.V., Hong, N.X.: A note on maximal subextensions of plurisubharmonic functions. Acta Math. Vietnam. 43, 137–146 (2018) Hiep, H.P.: Pluripolar sets and the subextension in Cegrell’s classes. Complex Var. Elliptic Equ. 53(7), 675–684 (2008) Hong, X.N.: Monge-Ampère measures of maximal subextension of plurisubharmonic functions with given boundary values. Complex Var. Elliptic Equ. 60(3), 429–435 (2015) Hong, X.N., Trao, V.N., Van Thuy, T.: Convergence in capacity of plurisubharmonic functions with given boundary values. Int. J. Math. 28(3), 1750018 (2017). (14pages)