Wavelet frame based blind image inpainting
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goldstein, 2009, The split Bregman algorithm for L1 regularized problems, SIAM J. Imaging Sci., 2, 323, 10.1137/080725891
M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, in: SIGGRAPH, 2000, pp. 417–424.
Bertalmio, 2003, Simultaneous structure and texture image inpainting, IEEE Trans. Image Process., 12, 882, 10.1109/TIP.2003.815261
Chan, 2006, Total variation wavelet inpainting, J. Math. Imaging Vision, 25, 107, 10.1007/s10851-006-5257-3
Chan, 2002, Eulerʼs elastica and curvature-based inpainting, SIAM J. Appl. Math., 63, 564
Cai, 2008, Convergence analysis of tight framelet approach for missing data recovery, Adv. Comput. Math., 1
Cai, 2008, A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24, 131, 10.1016/j.acha.2007.10.002
Cai, 2010, Simultaneous cartoon and texture inpainting, Inverse Probl. Imaging, 4, 379, 10.3934/ipi.2010.4.379
Cai, 2008, A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24, 131, 10.1016/j.acha.2007.10.002
Z. Shen, Wavelet frames and image restorations, in: Proceedings of the International Congress of Mathematicians, Hyderabad, India.
B. Dong, Z. Shen, MRA based wavelet frames and applications, in: Summer Program on “The Mathematics of Image Processing”, in: IAS/Park City Math. Ser., Amer. Math. Soc.
Chan, 2005
Gonzalez, 2002
H. Ji, Z. Shen, Y.-H. Xu, Robust video restoration by simultaneous sparse and low-rank matrices decomposition, Tech. Rep., NUS, 2010.
Gilboa, 2008, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005, 10.1137/070698592
Ji, 2011, Wavelet frame based image restoration with missing/damaged pixels, East Asia J. Appl. Math., 1, 108, 10.4208/eajam.020310.240610a
A. Ayvaci, M. Raptis, S. Soatto, Optical flow and occlusion detection with convex optimization, in: Proc. of Neuro Information Processing Systems (NIPS), 2010.
Coifman, 1995, Translation-Invariant De-Noising, 125
Candes, 2004, New tight frames of curvelets and optimal representations of objects with C2 singularities, Comm. Pure Appl. Math., 56, 219, 10.1002/cpa.10116
Cai, 2009, Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8, 337, 10.1137/090753504
Chaux, 2007, A variational formulation for frame-based inverse problems, Inverse Problems, 23, 1495, 10.1088/0266-5611/23/4/008
Daubechies, 2007, Iteratively solving linear inverse problems under general convex constraints, Inverse Probl. Imaging, 1, 29, 10.3934/ipi.2007.1.29
Elad, 2005, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput. Harmon. Anal., 19, 340, 10.1016/j.acha.2005.03.005
Fadili, 2009, Inpainting and zooming using sparse representations, Comput. J., 52, 64, 10.1093/comjnl/bxm055
Chai, 2007, Deconvolution: A wavelet frame approach, Numer. Math., 106, 529, 10.1007/s00211-007-0075-0
Goldstein, 2009, Geometric applications of the split Bregman method: Segmentation and surface reconstruction, J. Sci. Comput., 45, 272
Cai, 2009, Linearized Bregman iterations for compressed sensing, Math. Comp., 78, 1515, 10.1090/S0025-5718-08-02189-3
Daubechies, 1992
Ron, 1997, Affine systems in L2(Rd): The analysis of the analysis operator, J. Funct. Anal., 148, 408, 10.1006/jfan.1996.3079
Daubechies, 2003, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14, 1, 10.1016/S1063-5203(02)00511-0
Cai, 2010, Fast two-phase image deblurring under impulse noise, J. Math. Imaging Vision, 36, 46, 10.1007/s10851-009-0169-7
Bar, 2006, Image deblurring in the presence of impulse noise, Int. J. Comput. Vis., 70, 279, 10.1007/s11263-006-6468-1
Bar, 2005, Image deblurring in the presence of salt-and-pepper noise, vol. 3459, 107
Healey, 1994, Radiometric ccd camera calibration and noise estimation, IEEE Trans. PAMI, 16, 267, 10.1109/34.276126
Alliney, 1992, Digital filters as absolute norm regularizers, IEEE Trans. Signal Process., 40, 1548, 10.1109/78.139258
Chan, 2005, Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math., 65, 1817, 10.1137/040604297
Nikolova, 2004, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20, 99, 10.1023/B:JMIV.0000011920.58935.9c
Zhang, 2010, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3, 253, 10.1137/090746379
E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split Bregman, Tech. Rep. TR 09-31, UCLA, March 2009.
Tai, 2009, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, Scale Space Var. Methods in Comput. Vision, 502, 10.1007/978-3-642-02256-2_42
Glowinski, 1989
Setzer, 2009, Split Bregman algorithm, Douglas–Rachford splitting and frame shrinkage, Scale Space Var. Methods in Comput. Vision, 464, 10.1007/978-3-642-02256-2_39
Donoho, 1995, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41, 613, 10.1109/18.382009
Combettes, 2006, Signal recovery by proximal forward–backward splitting, Multiscale Model. Simul., 4, 1168, 10.1137/050626090
Dong, 2009, A Novel method for enhanced needle localization using ultrasound-guidance, Adv. Vis. Comput., 914, 10.1007/978-3-642-10331-5_85
Chen, 2001, Adaptive impulse detection using center-weighted median filters, IEEE Signal Process. Lett., 8, 1, 10.1109/97.889633
Hwang, 1995, Adaptive median filters: new algorithms and results, IEEE Trans. Image Process., 4, 499, 10.1109/83.370679