Wave energy worldwide: Simulating wave farms, forecasting, and calculating reserves
Tóm tắt
Từ khóa
Tài liệu tham khảo
Esteban, 2011, Current developments and future prospects of off shore wind and ocean energy, Appl. Energy, 90, 128, 10.1016/j.apenergy.2011.06.011
Arinaga, 2012, Atlas of global wave energy from 10years of reanalysis and hindcast data, Renewable Energy, 39, 49, 10.1016/j.renene.2011.06.039
Uihlein, 2016, Wave and tidal current energy: a review of the current state of research beyond technology, Renew. Sustain. Energy Rev., 58, 1070, 10.1016/j.rser.2015.12.284
Reikard, 2015, Combining wave energy with wind and solar: short-term forecasting, Renewable Energy, 81, 442, 10.1016/j.renene.2015.03.032
Reikard, 2013, Integrating wave energy into the power grid: simulation and forecasting, Ocean Eng., 73, 168, 10.1016/j.oceaneng.2013.08.005
Reikard, 2011, Forecasting ocean wave energy: the ECMWF wave model and time series methods, Ocean Eng., 38, 1089, 10.1016/j.oceaneng.2011.04.009
European Center for Medium-range Weather Forecasts, 2015
Bidlot, 2012, Present status of wave forecasting at ECMWF
Hasselmann, 1976, A parametric wave prediction model, J. Phys. Oceanogr., 6, 200, 10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
Hasselmann, 1980, Directional wave spectra observed during JONSWAP 1973, J. Phys. Oceanogr., 10, 1264, 10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2
Hasselmann, 1985, Computations and parameterizations of the non-linear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the non-linear energy transfer for application in wave models, J. Phys. Oceanogr., 15, 1378, 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
Janssen, 1991, Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, 1631, 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
Janssen, 2007, Progress in ocean wave forecasting, J. Comput. Phys., 227, 3572, 10.1016/j.jcp.2007.04.029
Wave Hub, 2016. <www.wavehub.co.uk>.
Bidlot, 2002, Inter-comparison of the performance of operational ocean wave forecasting systems with buoy data, Weather Forecasting, 17, 287, 10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2
Joint Technical Commission for Oceanography and Marine Meteorology, 2016, <http://www.jcomm.info/index.php?option=com_content&view=article&id=131&Itemid=37>.
Bureau of Ocean Energy Management, 2015. <http://www.boem.gov/BOEM-Overview-Renewable-Energy/>.
National Renewable Energy Laboratory, 2015. <http://www.nrel.gov/gis/mhk.html>.
Dallman, 2014, 3
Beyene, 2007, Digital mapping of California wave energy resource, Int. J. Energy Res., 31, 1156, 10.1002/er.1326
García-Medina, 2014, Wave resource assessment in Oregon and southwest Washington, USA, Renewable Energy, 64, 203, 10.1016/j.renene.2013.11.014
Robertson, 2014, Characterizing the nearshore energy resources on the west coast of Vancouver Island, Renewable Energy, 71, 665, 10.1016/j.renene.2014.06.006
Reikard, 2015, Simulating and forecasting ocean wave energy in Western Canada, Ocean Eng., 103, 223, 10.1016/j.oceaneng.2015.04.081
Fernandez, 2015, Significant wave height and energy flux range forecast with machine learning classifiers, Eng. Appl. Artif. Intell., 43, 44, 10.1016/j.engappai.2015.03.012
Ibarra-Berastegi, 2015, Short-term forecasting of the wave energy flux: analogues, random forests and physics-based models, Ocean Eng., 104, 530, 10.1016/j.oceaneng.2015.05.038
Stopa, 2011, Assessment of wave energy resources in Hawaii, Renewable Energy, 35, 554, 10.1016/j.renene.2010.07.014
Carnegie Wave, 2016. <www.carnegiewave.com>.
Chawla, 2012, Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds, Ocean Modeling, 70, 189, 10.1016/j.ocemod.2012.07.005
Garcia-Medina, 2013, An inner-shelf wave forecasting system for the U.S. Pacific Northwest, Weather Forecasting, 28, 681, 10.1175/WAF-D-12-00055.1
Falcao, 2010, Wave energy utilization: a review of the technologies, Renew. Sustain. Energy Rev., 14, 899, 10.1016/j.rser.2009.11.003
Parkinson, 2015, Integrating ocean wave energy at large-scales: a study of the US Pacific Northwest, Renewable Energy, 76, 551, 10.1016/j.renene.2014.11.038
Robertson, 2016, Quantifying wave power and wave energy converter array production potential, Int. J. Mar. Energy, 14, 143, 10.1016/j.ijome.2015.10.001
Ruehl, 2013, Development of SNL-SWAN, a validated wave energy converter array modeling tool
Porter, 2014, Further development of SNL-SWAN, a validated wave energy converter array modeling tool
Ruehl, 2014, Preliminary verification and validation of WEC-Sim, an open source wave energy converter design tool, 10.1115/OMAE2014-24312
Retzler, 2006, Measurements of the slow drift dynamics of a model Pelamis wave energy converter, Renewable Energy, 31, 257, 10.1016/j.renene.2005.08.025
Henderson, 2006, Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter, Renewable Energy, 31, 271, 10.1016/j.renene.2005.08.021
Yemm, 2012, Pelamis: experience from concept to connection, Philos. Trans. R. Soc., 370, 365, 10.1098/rsta.2011.0312
Babarit, 2012, Numerical benchmarking study of a selection of wave energy converters, Renewable Energy, 41, 44, 10.1016/j.renene.2011.10.002
Robertson, 2016, Influence of wave resource assessment methodology on wave energy production estimates, Renewable Energy, 86, 1145, 10.1016/j.renene.2015.09.020
Deo, 1998, Real time wave forecasting using neural networks, Ocean Eng., 26, 191, 10.1016/S0029-8018(97)10025-7
Deo, 2003, Prediction of breaking waves with neural networks, Ocean Eng., 30, 1163, 10.1016/S0029-8018(02)00086-0
Gaur, 2008, Real-time wave forecasting using genetic programming, Ocean Eng., 35, 1166, 10.1016/j.oceaneng.2008.04.007
Ho, 2006, Wave height forecasting by the transfer function model, Ocean Eng., 33, 1230, 10.1016/j.oceaneng.2005.09.003
Jain, 2007, Real-time wave forecasts off the western Indian coast, Appl. Ocean Res., 29, 72, 10.1016/j.apor.2007.05.003
Jeon, 2016, Short-term density forecasting of wave energy using ARMA-GARCH models and Kernel density estimation, Int. J. Forecast., 32, 991, 10.1016/j.ijforecast.2015.11.003
Londhe, 2006, One-day wave forecasts based on artificial neural networks, J. Atmos. Oceanic Technol., 23, 1593, 10.1175/JTECH1932.1
Roulston, 2005, Forecasting wave height probabilities with numerical weather prediction models, Ocean Eng., 32, 1841, 10.1016/j.oceaneng.2004.11.012
Tsai, 2002, Neural network for wave forecasting among multi-stations, Ocean Eng., 29, 1683, 10.1016/S0029-8018(01)00112-3
Tseng, 2007, Application of artificial neural networks in typhoon surge forecasting, Ocean Eng., 34, 1757, 10.1016/j.oceaneng.2006.09.005
Zamani, 2008, Learning from data for wind–wave forecasting, Ocean Eng., 35, 953, 10.1016/j.oceaneng.2008.03.007
Durrant, 2008, Consensus forecasts of modeled wave parameters, Weather Forecasting, 24, 492, 10.1175/2008WAF2222143.1
Woodcock, 2006, Consensus of numerical forecasts of significant wave heights, Weather Forecasting, 22, 792, 10.1175/WAF1021.1
Pinson, 2012, Probabilistic forecasting of the wave energy flux, Appl. Energy, 93, 364, 10.1016/j.apenergy.2011.12.040
Bunn, 2004
Granger, 2008, Non-Linear Models: Where Do We Go Next – Time Varying Parameter Models?, Stud. Nonlinear Dyn. Econometr., 12
Akaike, 1973, Information theory and the extension of the maximum likelihood principle, 267
Kalman, 1960, A new approach to linear filtering and prediction problems, Trans. Am. Soc. Mech. Eng. J. Basic Eng., 83D, 35
Rossi, 2012, Out-of-sample forecast tests robust to the choice of window size, J. Bus. Econ. Stat., 30, 432, 10.1080/07350015.2012.693850
Federal Energy Regulatory Commission, 2012. Order 764.
BC Hydro, 2011. Real time operations operating order 1T-61.
Schertzer, 1997, Multifractal cascade dynamics and turbulent intermittency, Fractals, 5, 427, 10.1142/S0218348X97000371