Wave energy extraction in Scotland through an improved nearshore wave atlas

International Journal of Marine Energy - Tập 17 - Trang 64-83 - 2017
George Lavidas1, Vengatesan Venugopal1, Daniel Friedrich1
1The University of Edinburgh, Institute for Energy Systems, Faraday Building, King's Buildings, Colin MacLaurin Road, Edinburgh, EH9 3DW, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. Parliament, The European Parliament. Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources amending and subsequently repealing directives 2001/77/ec and 2003/30/ec., Tech. rep. (2009).

A. M. Cornett, A global wave energy resource assessment, in: Proc. Eighteenth Int. Offshore Polar Eng. Conf. Vancouver, BC, Canada July 6–11 8 (2008) 318–326.

J. Cruz, Ocean wave energy: current status and future perspectives, 2008.

A. Vögler, V. Venugopal, OMAE2012-83658 Hebridean marine energy resources: wave-power characterisation using a buoy network, in: ASME (Ed.), Proc. ASME 2012 31st Int. Conf. Ocean. Offshore Arct. Eng. June10-15, Rio Janeiro, Brazil, Rio de Janeiro, Brazil, 2012, pp. 1– 11.

DECC (Department of Energy and Climate Change), Analysis of Renewables Growth to 2020, AEA Gr. Rep. (1).

ORECCA, Off-shore Renewable Energy Conversion platforms-Coordination Action (ORECCA) (2015). URL <http://www.orecca.eu/web/guest>.

EMEC, Assessment of performance of wave energy conversion systems, Marine Renewable Energy Guide, 2009, pp. 1–28.

Caires, 2005, 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data, J. Clim., 18, 1032, 10.1175/JCLI-3312.1

Sterl, 2005, Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas, Int. J. Climatol., 25, 963, 10.1002/joc.1175

Agarwal, 2015

Neill, 2013, Wave power variability over the northwest European shelf seas, Appl. Energy, 106, 31, 10.1016/j.apenergy.2013.01.026

MER, WEBvision – Renewable (wave), 2014, URL <http://vision.abpmer.net/renewables/>.

D. Ingram, G. Smith, C. Bittencourt-Ferreira, H. Smith, EquiMar: protocols for the equitable assessment of marine energy converters, no. 213380, 2011, doi: 978-0-9508920-3-0.

H. Smith, Best practice guidelines for wave and current resource assessment task 1. 6 of WP3 from the MERiFIC Project A report prepared as part of the MERiFIC Project Marine Energy in Far Peripheral and Island Communities (June), 2014, pp. 1–16.

Cavaleri, 2009, Wave modeling-missing the peaks, J. Phys. Oceanogr., 39, 2757, 10.1175/2009JPO4067.1

Bertotti, 2012, Performance of different forecast systems in an exceptional storm in the Western Mediterranean Sea, Q.J.R. Meteorol. Soc., 138, 34, 10.1002/qj.892

Bertotti, 2009, Wind and wave predictions in the Adriatic Sea, J. Mar. Syst., 78, S227, 10.1016/j.jmarsys.2009.01.018

T. Soukissian, N. Gizari, D. Fytilis, A. Papadopoulos, G. Korres, A. Prospathopoulos, wind and wave potential in offshore locations of the Greek seas, in: Proc. Twenty-second Int. Offshore Polar Eng. Conf. June 17–22, vol. 4, 2012, pp. 525–532.

Peres, 2015, Significant wave height record extension by neural networks and reanalysis wind data, Ocean Model., 94, 128, 10.1016/j.ocemod.2015.08.002

G. Lavidas, V. Venugopal, Influence of computational domain size on wave energy assessments in energetic waters, in: Proc. 11th Eur. Wave Tidal Energy Conf. 6–11th Sept 2015, Nantes, Fr., EWTEC, Nantes, 2015, pp. 1–8.

Lavidas, 2017, Sensitivity of a numerical wave model on wind re-analysis datasets, Dyn. Atmos. Oceans, 77, 1, 10.1016/j.dynatmoce.2016.10.007

Gunn, 2012, Quantifying the global wave power resource, Renew. Energy, 44, 296, 10.1016/j.renene.2012.01.101

Barstow, 2009, WorldWaves wave energy resource assessments from the deep ocean to the coast, Fugro Ocean, AS, 149

Reguero, 1948, (GOW) calibrated reanalysis from, onwards, Coast. Eng., 65, 38

S. Gallagher, R. Tiron, F. Dias, OMAE2013-10719 A detailed investigation of the nearshore wave climate and the nearshore wave energy resource on the west coast of Ireland, in: ASME 2013 32nd Int. Conf. Ocean. Offshore Arct. Eng. OMAE2013, June 9–14, Nantes, France, 2013, pp. 1–12.

Venugopal, 2015, Wave resource assessment for Scottish waters using a large scale North Atlantic spectral wave model, Renew. Energy, 76, 503, 10.1016/j.renene.2014.11.056

Wood, 2011, What lessons have been learned in reforming the Renewables Obligation? an analysis of internal and external failures in UK renewable energy policy, Energy Policy, 39, 2228, 10.1016/j.enpol.2010.11.012

Carbon Trust, AMEC, Carbon Trust Foreword to UK Wave Resource Study., Tech. Rep. October, 2012.

Hervás Soriano, 2011, EU Research and Innovation (R & I) in renewable energies: the role of the Strategic Energy Technology Plan (SET-Plan), 6, 39, 3582

Tipping, 2009

J. Taylor, R. Wallace, J. Bialek, Matching renewable electricity generation with demand, Scottish Exec. (February).

Falcao, 2010, Wave energy utilization: a review of the technologies, Renew. Sustain. Energy Rev., 14, 899, 10.1016/j.rser.2009.11.003

Babarit, 2012, Numerical benchmarking study of a selection of wave energy converters, Renew. Energy, 41, 44, 10.1016/j.renene.2011.10.002

ECMWF, ERA Interim (2014). URL <http://www.ecmwf.int/>.

Mackay, 2010, Uncertainty in wave energy resource assessment. Part 2: variability and predictability, Renew. Energy, 35, 1809, 10.1016/j.renene.2009.10.027

CrownEstates, The Crown Estates-Energy and Infrastructure, 2014. URL <http://www.thecrownestate.co.uk/energy-infrastructure/>.

Sterl, 1998, Fifteen years of global wave hindcasts using winds from the European Centre for Medium-Range Weather Forecasts reanalysis: validating the reanalyzed winds and assessing the wave climate, J. Geophys. Res., 103, 5477, 10.1029/97JC03431

C.E. Greenwood, V. Venugopal, D. Christie, J. Morrison, A. Vogler, OMAE2013-11356 Wave modelling for potential wave energy sites around the outer Hebrides, in: ASME 2013 32nd Int. Conf. Ocean. Offshore Arct. Eng. OMAE2013, June 9–14, Nantes, France, 2013, pp. 1–9.

P. Gleizon, Modelling wave energy in archipelagos-case of northern scotland, in: EIMR2014-968, no. May, 2014, pp. 1–4.

P. Gleizon, F.J. Campuzano, P.C. García, B. Gomez, A. Martinez, Wave energy mapping along the European Atlantic coast, in: Proc. 11th Eur. Wave Tidal Energy Conf. 6–11th Sept 2015, Nantes, Fr., 2015, pp. 1–9.

T. Delft, Scientific and technical documentation SWAN cycle III version 40.91ABC, 2013. URL <http://swanmodel.sourceforge.net/>.

C. Amante, B. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2014). URL <http://maps.ngdc.noaa.gov/viewers/wcs-client/>.

Dee, 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q.J.R. Meteorol. Soc., 137, 553, 10.1002/qj.828

Janssen, 1991, Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr., 6, 1631, 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2

G. van Vledder, M. Zijlema, L. Holthuijsen, Revisiting the JONSWAP bottom friction formulation, in: Proc. 32nd Conf. Coast. Eng. Shanghai, China, 2010, Proceedings of the International Conference on Coastal Engineering; No 32, 2010, pp. 1–8.

Center for environment fisheries & aquaculture science. URL <http://www.cefas.defra.gov.uk/home.aspx>.

T. Delft, User manual SWAN Cycle III version 40.91ABC, Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section, 2013, URL <http://www.fluidmechanics.tudelft.nl/swan/index.htmhttp://www.fluidmechanics.tu>.

Ratsimandresy, 2008, A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean Basin developed within the HIPOCAS Project, Coast. Eng., 55, 827, 10.1016/j.coastaleng.2008.02.025

Pilar, 2008, 44-year wave hindcast for the North East Atlantic European coast, Coast. Eng., 55, 861, 10.1016/j.coastaleng.2008.02.027

Canellas, 2007, Application of a POT model to estimate the extreme significant wave height levels around the Balearic Sea (Western Mediterranean), J. Coast. Res. Spec. Issue, 50, 329

Akpinar, 2013, Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data, Appl. Energy, 101, 502, 10.1016/j.apenergy.2012.06.005

Van Vledder, 2015, Wave model predictions in the Black Sea: sensitivity to wind fields, Appl. Ocean Res., 53, 161, 10.1016/j.apor.2015.08.006

Stopa, 2014, Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis, Ocean Model., 75, 65, 10.1016/j.ocemod.2013.12.006

V. Venugopal, T. Davey, F. Girard, H. Smith, L. Cavaleri, L. Bertotti, S. Mauro, Equitable testing and evaluation of Marine Energy Extraction Devices of Performance, Cost and Environmental Impact. Deliverable 2.4 Wave Model Intercomparison, Tech. rep., 2011.

van Os, 2011, How to carry out metocean studies, Proc. Twenty-first Int. Offshore Polar Eng. Conf., 19–14, 290

G. Hagerman, Southern New England Wave Energy Resource Potential, in: Build. Energy, no. March, 2001.

Saglam, 2010, Wave energy and technical potential of Turkey, J. Nav. Sci. Eng., 6, 34

Akpinar, 2012, Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea, Cont. Shelf Res., 50–51, 80, 10.1016/j.csr.2012.09.012

Silva, 2013, Evaluation of various technologies for wave energy conversion in the portuguese nearshore, Energies, 6, 1344, 10.3390/en6031344

Rusu, 2015, Assessment of the performances of various wave energy converters along the European continental coasts, Energy, 82, 889, 10.1016/j.energy.2015.01.099

WaveStar, WaveStar, 2015. URL <http://wavestarenergy.com/>.

Fusco, 2010, Variability reduction through optimal combination of wind/wave resources-An Irish case study, Energy, 35, 314, 10.1016/j.energy.2009.09.023

Babarit, 2015, A database of capture width ratio of wave energy converters, Renew. Energy, 80, 610, 10.1016/j.renene.2015.02.049

Rusu, 2009, Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore, Renew. Energy, 34, 1501, 10.1016/j.renene.2008.10.027

R.H. Hansen, M.M. Kramer, Modelling and control of the wavestar prototype, in: Proc. 9th Eur. Wave Tidal Energy Conf., 2011, pp. 1–10.

Dalton, 2010, Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America, Renew. Energy, 35, 443, 10.1016/j.renene.2009.07.003

F. Sharkey, E. Bannon, M. Conlon, K. Gaughan, Dynamic electrical ratings and the economics of capacity factor for wave energy converter arrays, in: Proc. 9th Eur. Wave Tidal Energy Conf., 2011, pp. 1–8.

Dunnett, 2009, Electricity generation from wave power in Canada, Renew. Energy, 34, 179, 10.1016/j.renene.2008.04.034

O’Connor, 2013, Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe, Renew. Energy, 50, 889, 10.1016/j.renene.2012.08.009

Carballo, 2012, A methodology to determine the power performance of wave energy converters at a particular coastal location, Energy Convers. Manag., 61, 8, 10.1016/j.enconman.2012.03.008

Manwell, 2009

Sathyajith, 2006

Kaldellis, 2010

S. Bozzi, P. Milano, G. Passoni, Mediterranean sea: comparison among different technologies, in: ASME 2011 30th Int. Conf. Ocean. Offshore Arct. Eng. vol. 5 Ocean Sp. Util. Ocean Renew. Energy Rotterdam, Netherlands, June 19–24, 2011, 2011, pp. 1–6. doi: 978-0-7918-4437-3.

Energy Information Administation Agency U.S., Annual Energy Outlook 2014, 2014, URL <http://www.eia.gov/forecasts/aeo/electricitygeneration.cfm>.

Stoutenburg, 2010, Power output variations of co-located offshore wind turbines and wave energy converters in California, Renew. Energy, 35, 2781, 10.1016/j.renene.2010.04.033

J.P. Sierra, C. Mosso, M. Mestres, D. González-Marco, M. Grino, Assessment of the Wave Energy Resource around the Ria de Vigo (NW Spain), in: Proc. 11th Eur. Wave Tidal Energy Conf. 6–11th Sept 2015, Nantes, Fr., 2015, pp. 1–7.

Rafferty, 2008

DTI, Quantifying the system cost of additional renewables in 2020, Tech. rep., 2002.

Allan, 2011, Levelised costs of Wave and Tidal energy in the UK: cost competitiveness and the importance of banded renewables obligation certificates, Energy Policy, 39, 23, 10.1016/j.enpol.2010.08.029

A.D. Andrés, A. Macgillivray, R. Guanche, H. Jeffrey, Factors affecting LCOE of Ocean energy technologies: a study of technology and deployment attractiveness, in: 5th Int. Conf. Ocean Energy, Halifax Factors, 2014, pp. 1–11.

Astariz, 2015, The economics of wave energy: a review, Renew. Sustain. Energy Rev., 45, 397, 10.1016/j.rser.2015.01.061

OES, Annual Report Implementing Agreement on Ocean Energy Systems, Tech. rep., 2014, doi: http://dx.doi.org/10.1017/S0001972000001765. URL <http://www.ocean-energy-systems.org/>.

Kaldellis, 2011

Magagna, 2015, Ocean energy development in Europe: current status and future perspectives, Int. J. Mar. Energy, 11, 84, 10.1016/j.ijome.2015.05.001

Zafirakis, 2013, Socially just support mechanisms for the promotion of renewable energy sources in Greece, Renew. Sustain. Energy Rev., 21, 478, 10.1016/j.rser.2012.12.030

Ocean Energy: Cost of Energy and Cost Reduction Opportunities, Tech. Rep. May, 2013, URL <http://si-ocean.eu/en/upload/docs/WP3/CoEreport3{_}2final.pdf>.

OES, International Levelised Cost Of Energy for Ocean Energy Technologies, Tech. Rep., May, 2015.

Farrell, 2015, Quantifying the uncertainty of wave energy conversion device cost for policy appraisal: an Irish case study, Energy Policy, 78, 62, 10.1016/j.enpol.2014.11.029

Rusu, 2016, Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands, Renew. Energy, 85, 687, 10.1016/j.renene.2015.07.042