Wave Modeling of the Solar Wind
Tóm tắt
The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.
Tài liệu tham khảo
Abbo, L., Ofman, L. and Giordano, S., 2010, “Streamers study at solar minimum: combination of UV observations and numerical modeling”, in Twelfth International Solar Wind Conference, Saint-Malo, France, 21–26 June 2009, (Eds.) Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantelli, F., AIP Conference Proceedings, 1216, pp. 387–390, American Institute of Physics, Melville, NY. [DOI], [ADS] (Cited on page 7.)
Airapetian, V., Ofman, L., Sittler, E.C. and Kramar, M., 2011, “Probing the Thermodynamics and Kinematics of Solar Coronal Streamers”, Astrophys. J., 728, 67. [DOI], [ADS] (Cited on page 7.)
Alazraki, G. and Couturier, P., 1971, “Solar Wind Accejeration Caused by the Gradient of Alfvén Wave Pressure”, Astron. Astrophys., 13, 380–389. [ADS] (Cited on page 7.)
Antonucci, E., Dodero, M.A. and Giordano, S., 2000, “Fast Solar Wind Velocity in a Polar Coronal Hole during Solar Minimum”, Solar Phys., 197, 115–134. [DOI], [ADS] (Cited on page 21.)
Araneda, J.A., Marsch, E. and Viñnas, A.F., 2007, “Collisionless damping of parametrically unstable Alfvén waves”, J. Geophys. Res., 112(A11), 4104. [DOI], [ADS] (Cited on pages 10 and 27.)
Araneda, J.A., Marsch, E. and Viñas, A.F., 2008, “Proton Core Heating and Beam Formation via Parametrically Unstable Alfvén-Cyclotron Waves”, Phys. Rev. Lett., 100, 125003. [DOI], [ADS] (Cited on page 27.)
Aschwanden, M.J., 2004, Physics of the Solar Corona: An Introduction, Springer-Praxis Books in Geophysical Sciences, Springer; Praxis, Berlin; New York; Chichester. [ADS], [Google Books] (Cited on pages 16 and 31.)
Axford, W.I. and McKenzie, J.F., 1992, “The origin of high speed solar wind streams”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 1–5, Pergamon Press, Oxford; New York. [ADS] (Cited on page 8.)
Balogh, A., Beek, T.J., Forsyth, R.J., Hedgecock, P.C., Marquedant, R.J., Smith, E.J., Southwood, D.J. and Tsurutani, B.T., 1992, “The magnetic field investigation on the Ulysses mission: Instrumentation and preliminary scientific results”, Astron. Astrophys. Suppl., 92, 221–236. [ADS] (Cited on page 6.)
Banerjee, D., Gupta, G.R. and Teriaca, L., 2011, “Propagating MHD Waves in Coronal Holes”, Space Sci. Rev., 158, 267–288. [DOI], [ADS], [arXiv:1009.2980 [astro-ph.SR]] (Cited on page 9.)
Barnes, A., 1969, “Collisionless Heating of the Solar-Wind Plasma. II. Application of the Theory of Plasma Heating by Hydromagnetic Waves”, Astrophys. J., 155, 311. [DOI], [ADS] (Cited on page 7.)
Belcher, J.W., 1971, “Alfvénic Wave Pressures and the Solar Wind”, Astrophys. J., 168, 509–524. [DOI], [ADS] (Cited on page 7.)
Belcher, J.W. and Davis Jr, L., 1971, “Large-Amplitude Alfvén Waves in the Interplanetary Medium, 2”, J. Geophys. Res., 76(16), 3534–3563. [DOI], [ADS] (Cited on page 7.)
Braginskii, S.I., 1965, “Transport processes in plasma”, in Review of Plasma Physics, (Ed.) Leontovich, M.A., Review of Plasma Physics, 1, pp. 201–311, Consultants Bureau, New York (Cited on pages 11 and 12.)
Bruno, R. and Carbone, V., 2013, “The Solar Wind as a Turbulence Laboratory”, Living Rev. Solar Phys., 10, lrsp-2013-2. [DOI], [ADS]. URL (accessed 22 November 2013: http://www.livingreviews.org/lrsp-2013-2 (Cited on page 9.)
Canals, A., Breen, A.R., Ofman, L., Moran, P.J. and Fallows, R.A., 2002, “Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements”, Ann. Geophys., 20, 1265–1277. [DOI], [ADS] (Cited on page 17.)
Chandran, B.D.G., 2010, “Alfvén-wave Turbulence and Perpendicular Ion Temperatures in Coronal Holes”, Astrophys. J., 720, 548–554. [DOI], [ADS], [arXiv:1006.3473 [astro-ph.SR]] (Cited on page 8.)
Chandran, B.D.G. and Hollweg, J.V., 2009, “Alfvén Wave Reflection and Turbulent Heating in the Solar Wind from 1 Solar Radius to 1AU: An Analytical Treatment”, Astrophys. J., 707, 1659–1667. [DOI], [ADS], [arXiv:0911.1068] (Cited on page 8.)
Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q. and Pongkitiwanichakul, P., 2009, “Constraining Low-Frequency Alfvénic Turbulence in the Solar Wind Using Density-Fluctuation Measurements”, Astrophys. J., 707, 1668–1675. [DOI], [ADS], [arXiv:0908.0757] (Cited on page 8.)
Chandran, B.D.G., Pongkitiwanichakul, P., Isenberg, P.A., Lee, M.A., Markovskii, S.A., Hollweg, J.V. and Vasquez, B.J., 2010, “Resonant Interactions Between Protons and Oblique Alfvéen/Ion-cyclotron Waves in the Solar Corona and Solar Flares”, Astrophys. J., 722, 710–720. [DOI], [ADS] (Cited on page 8.)
Chandran, B.D.G., Dennis, T.J., Quataert, E. and Bale, S.D., 2011, “Incorporating Kinetic Physics into a Two-fluid Solar-wind Model with Temperature Anisotropy and Low-frequency Alfvén-wave Turbulence”, Astrophys. J., 743, 197. [DOI], [ADS], [arXiv:1110.3029 [astro-ph.SR]] (Cited on page 8.)
Cohen, O., Sokolov, I.V., Roussev, I.I. et al., 2007, “A Semiempirical Magnetohydrodynamical Model of the Solar Wind”, Astrophys. J. Lett., 654, L163–L166. [DOI], [ADS] (Cited on pages 7 and 11.)
Colgan, J., Abdallah Jr, J., Sherrill, M.E., Foster, M., Fontes, C.J. and Feldman, U., 2008, “Radiative Losses of Solar Coronal Plasmas”, Astrophys. J., 689, 585–592. [DOI], [ADS] (Cited on page 11.)
Cranmer, S.R., 2000, “Ion Cyclotron Wave Dissipation in the Solar Corona: The Summed Effect of More than 2000 Ion Species”, Astrophys. J., 532, 1197–1208. [DOI], [ADS] (Cited on page 8.)
Cranmer, S.R., 2012, “Self-Consistent Models of the Solar Wind”, Space Sci. Rev., 172, 145–156. [DOI], [ADS], [arXiv:1007.0954 [astro-ph.SR]] (Cited on page 10.)
Cranmer, S.R. and van Ballegooijen, A.A., 2005, “On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere”, Astrophys. J. Suppl. Ser., 156, 265–293. [DOI], [ADS], [astro-ph/0410639] (Cited on pages 7, 8, and 9.)
Cranmer, S.R. and van Ballegooijen, A.A., 2012, “Proton, Electron, and Ion Heating in the Fast Solar Wind from Nonlinear Coupling between Alfvénic and Fast-mode Turbulence”, Astrophys. J., 754, 92. [DOI], [ADS], [arXiv:1205.4613 [astro-ph.SR]] (Cited on page 8.)
Cranmer, S.R., Field, G.B. and Kohl, J.L., 1999, “Spectroscopic Constraints on Models of Ion Cyclotron Resonance Heating in the Polar Solar Corona and High-Speed Solar Wind”, Astrophys. J., 518, 937–947. [DOI], [ADS] (Cited on pages 7, 21, 25, and 27.)
Cranmer, S.R., van Ballegooijen, A.A. and Edgar, R.J., 2007, “Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence”, Astrophys. J. Suppl. Ser., 171, 520–551. [DOI], [ADS], [arXiv:astro-ph/0703333] (Cited on page 7.)
Daughton, W., Gary, S.P. and Winske, D., 1999, “Electromagnetic proton/proton instabilities in the solar wind: Simulations”, J. Geophys. Res., 104(A3), 4657–4668. [DOI], [ADS] (Cited on page 31.)
De Pontieu, B., McIntosh, S.W., Carlsson, M. et al., 2007, “Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind”, Science, 318, 1574–1577. [DOI], [ADS] (Cited on page 9.)
Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V. and Gombosi, T.I., 2010, “Toward a Realistic Thermodynamic Magnetohydrodynamic Model of the Global Solar Corona”, Astrophys. J., 712, 1219–1231. [DOI], [ADS], [arXiv:0912.2647 [astro-ph.SR]] (Cited on page 11.)
Dwivedi, N.K., Batra, K. and Sharma, R.P., 2012, “Study of kinetic Alfvén wave and whistler wave spectra and their implication in solar wind plasma”, J. Geophys. Res., 117, A07201. [DOI], [ADS] (Cited on page 8.)
Evans, R.M., Opher, M., Jatenco-Pereira, V. and Gombosi, T.I., 2009, “Surface Alfvén Wave Damping in a Three-Dimensional Simulation of the Solar Wind”, Astrophys. J., 703, 179–186. [DOI], [ADS], [arXiv:0908.3146] (Cited on page 7.)
Evans, R.M., Opher, M., Oran, R., van der Holst, B., Sokolov, I.V., Frazin, R., Gombosi, T.I. and Vásquez, A., 2012, “Coronal Heating by Surface Alfvén Wave Damping: Implementation in a global Magnetohydrodynamics Model of the Solar Wind”, Astrophys. J., 756, 155. [DOI], [ADS] (Cited on page 16.)
Feldman, W.C., Barraclough, B.L., Phillips, J.L. and Wang, Y.-M., 1996, “Constraints on high-speed solar wind structure near its coronal base: a ULYSSES perspective”, Astron. Astrophys., 316, 355–367. [ADS] (Cited on pages 8 and 21.)
Galinsky, V.L. and Shevchenko, V.I., 2013a, “Acceleration of the Solar Wind by Alfvén Wave Packets”, Astrophys. J., 763, 31. [DOI], [ADS] (Cited on page 8.)
Galinsky, V.L. and Shevchenko, V.I., 2013b, “Induced Emission of Alfvén Waves in Inhomogeneous Streaming Plasma: Implications for Solar Corona Heating and Solar Wind Acceleration”, Phys. Rev. Lett., 111, 015004. [DOI], [ADS] (Cited on page 8.)
Gary, S.P., 1993, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on pages 25 and 32.)
Gary, S.P., Wang, J., Winske, D. and Fuselier, S.A., 1997, “Proton temperature anisotropy upper bound”, J. Geophys. Res., 102(A12), 27,159–27,170. [DOI], [ADS] (Cited on page 31.)
Gary, S.P., Yin, L., Winske, D. and Reisenfeld, D.B., 2000, “Electromagnetic alpha/proton instabilities in the solar wind”, Geophys. Res. Lett., 27(9), 1355–1358. [DOI], [ADS] (Cited on page 31.)
Gary, S.P., Yin, L., Winske, D. and Ofman, L., 2001, “Electromagnetic heavy ion cyclotron instability: Anisotropy constraint in the solar corona”, J. Geophys. Res., 106, 10,715–10,722. [DOI], [ADS] (Cited on pages 10 and 31.)
Gary, S.P., Yin, L., Winske, D., Ofman, L., Goldstein, B.E. and Neugebauer, M., 2003, “Consequences of proton and alpha anisotropies in the solar wind: Hybrid simulations”, J. Geophys. Res., 108(A2), 1068. [DOI], [ADS] (Cited on pages 10, 25, 31, and 32.)
Gary, S.P., Yin, L. and Winske, D., 2006, “Alfvén-cyclotron scattering of solar wind ions: Hybrid simulations”, J. Geophys. Res., 111(A10), 6105. [DOI], [ADS] (Cited on page 10.)
Gazis, P.R. and Lazarus, A.J., 1982, “Voyager observations of solar wind proton temperature: 1–10 AU”, Geophys. Res. Lett., 9, 431–434. [DOI], [ADS] (Cited on page 8.)
Goldstein, B.E., Smith, E.J., Balogh, A., Horbury, T.S., Goldstein, M.L. and Roberts, D.A., 1995, “Properties of magnetohydrodynamic turbulence in the solar wind as observed by Ulysses at high heliographic latitudes”, Geophys. Res. Lett., 22, 3393–3396. [DOI], [ADS] (Cited on page 8.)
Grall, R.R., Coles, W.A., Klinglesmith, M.T., Breen, A.R., Williams, P.J.S., Markkanen, J. and Esser, R., 1996, “Rapid acceleration of the polar solar wind”, Nature, 379, 429. [DOI], [ADS] (Cited on page 17.)
Grappin, R. and Velli, M., 1996, “Waves and streams in the expanding solar wind”, J. Geophys. Res., 101, 425–444. [DOI], [ADS] (Cited on pages 14 and 27.)
Grappin, R., Léorat, J. and Habbal, S.R., 2002, “Large-amplitude Alfvén waves in open and closed coronal structures: A numerical study”, J. Geophys. Res., 107, 1380. [DOI], [ADS] (Cited on page 16.)
Guhathakurta, M., Sittler Jr, E.C. and Ofman, L., 2006, “Semiempirically derived heating function of the corona heliosphere during the Whole Sun Month”, J. Geophys. Res., 111, A11215. [DOI], [ADS] (Cited on page 7.)
Hahn, M. and Savin, D.W., 2013, “Observational Quantification of the Energy Dissipated by Alfvén Waves in a Polar Coronal Hole: Evidence that Waves Drive the Fast Solar Wind”, Astrophys. J., 776, 78. [DOI], [ADS], [arXiv:1302.5403 [astro-ph.SR]] (Cited on page 9.)
Hahn, M., Landi, E. and Savin, D.W., 2012, “Evidence ofWave Damping at Low Heights in a Polar Coronal Hole”, Astrophys. J., 753, 36. [DOI], [ADS], [arXiv:1202.1743 [astro-ph.SR]] (Cited on page 9.)
Hansteen, V.H. and Velli, M., 2012, “Solar Wind Models from the Chromosphere to 1 AU”, Space Sci. Rev., 172, 89.121. [DOI], [ADS] (Cited on page 10.)
Heinemann, M. and Olbert, S., 1980, “Non-WKB Alfvén waves in the Solar Wind”, J. Geophys. Res., 85(A3), 1311.1327. [DOI], [ADS] (Cited on page 7.)
Hellinger, P. and Trávnäček, P., 2006, “Parallel and oblique proton fire hose instabilities in the presence of alpha/proton drift: Hybrid simulations”, J. Geophys. Res., 111(A10), 1107. [DOI], [ADS] (Cited on page 10.)
Hellinger, P. and Trávnäček, P.M., 2011, “Proton core-beam system in the expanding solar wind: Hybrid simulations”, J. Geophys. Res., 116(A15), A11101. [DOI], [ADS] (Cited on page 34.)
Hellinger, P. and Trávnäček, P.M., 2013, “Protons and alpha particles in the expanding solar wind: Hybrid simulations”, J. Geophys. Res., 118, 5421.5430. [DOI], [ADS] (Cited on page 34.)
Hellinger, P., Velli, M., Trávnäček, P., Gary, S.P., Goldstein, B.E. and Liewer, P.C., 2005, “Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations”, J. Geophys. Res., 110(9), A12109. [DOI], [ADS] (Cited on pages 10 and 14.)
Hollweg, J.V., 2000, “Cyclotron resonance in coronal holes: 3. A five-beam turbulence-driven model”, J. Geophys. Res., 105(A7), 15,699.15,714. [DOI], [ADS] (Cited on page 8.)
Hollweg, J.V. and Isenberg, P.A., 2002, “Generation of the fast solar wind: A review with emphasis on the resonant cyclotron interaction”, J. Geophys. Res., 107(A7), 1147. [DOI], [ADS] (Cited on page 8.)
Hu, Y.Q., Esser, R. and Habbal, S.R., 2000, “A four-fluid turbulence-driven solar wind model for preferential acceleration and heating of heavy ions”, J. Geophys. Res., 105, 5093–5112. [DOI], [ADS] (Cited on page 8.)
Isenberg, P.A., 2004, “The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 3. The proton halo and dispersive waves”, J. Geophys. Res., 109, A03101. [DOI], [ADS] (Cited on page 8.)
Isenberg, P.A., 2012, “A self-consistent marginally stable state for parallel ion cyclotron waves”, Phys. Plasmas, 19(3), 032116. [DOI], [ADS], [arXiv:1203.1938 [physics.plasm-ph]] (Cited on page 8.)
Isenberg, P.A. and Vasquez, B.J., 2011, “A Kinetic Model of Solar Wind Generation by Oblique Ioncyclotron Waves”, Astrophys. J., 731, 88. [DOI], [ADS] (Cited on page 8.)
Kaghashvili, E.K., Vasquez, B.J. and Hollweg, J.V., 2003, “Deceleration of streaming alpha particles interacting with waves and imbedded rotational discontinuities”, J. Geophys. Res., 108(A1), 1036. [DOI], [ADS] (Cited on page 10.)
Ko, Y.-K., Li, J., Riley, P. and Raymond, J.C., 2008, “Large-Scale Coronal Density and Abundance Structures and Their Association with Magnetic Field Structure”, Astrophys. J., 683, 1168–1179. [DOI], [ADS] (Cited on page 6.)
Kohl, J.L., Noci, G., Antonucci, E. et al., 1997, “First Results from the SOHO Ultraviolet Coronagraph Spectrometer”, Solar Phys., 175, 613–644. [DOI], [ADS] (Cited on pages 6, 7, 12, 21, 25, and 27.)
Kohl, J.L., Noci, G., Antonucci, E. et al., 1998, “UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona”, Astrophys. J. Lett., 501, L127–L131. [DOI], [ADS] (Cited on page 7.)
Landi, E. and Landini, M., 1999, “Radiative losses of optically thin coronal plasmas”, Astron. Astrophys., 347, 401–408. [ADS] (Cited on page 11.)
Lau, Y.-T. and Siregar, E., 1996, “Nonlinear Alfven Wave Propagation in the Solar Wind”, Astrophys. J., 465, 451. [DOI], [ADS] (Cited on page 16.)
Lepping, R.P., Acuña, M.H., Burlaga, L.F. et al., 1995, “The Wind Magnetic Field Investigation”, Space Sci. Rev., 71, 207–229. [DOI], [ADS] (Cited on page 6.)
Li, B., Xia, L.D. and Chen, Y., 2011, “Solar winds along curved magnetic field lines”, Astron. Astrophys., 529, A148. [DOI], [ADS], [arXiv:1103.5211 [astro-ph.SR]] (Cited on page 8.)
Li, X. and Habbal, S.R., 2005, “Hybrid simulation of ion cyclotron resonance in the solar wind: Evolution of velocity distribution functions”, J. Geophys. Res., 110, A10109. [DOI], [ADS] (Cited on page 10.)
Li, X., Esser, R., Habbal, S.R. and Hu, Y., 1997, “Influence of heavy ions on the high-speed solar wind”, J. Geophys. Res., 102(A8), 17,419–17,432. [DOI], [ADS] (Cited on page 12.)
Li, X., Habbal, S.R., Kohl, J. and Noci, G., 1998, “The Effect of Temperature Anisotropy on Observations of Doppler Dimming and Pumping in the Inner Corona”, Astrophys. J. Lett., 501, L133–L137. [DOI], [ADS] (Cited on page 7.)
Li, X., Habbal, S.R., Hollweg, J.V. and Esser, R., 1999, “Heating and cooling of protons by turbulencedrivenion cyclotron waves in the fast solar wind”, J. Geophys. Res., 104(A2), 2521–2535. [DOI], [ADS] (Cited on page 8.)
Liewer, P.C., Velli, M. and Goldstein, B.E., 2001, “Alfvén wave propagation and ion cyclotron interactions in the expanding solar wind: One-dimensional hybrid simulations”, J. Geophys. Res., 106(A12), 29,261–29,282. [DOI], [ADS] (Cited on pages 10, 14, and 27.)
Linker, J.A., Mikić, Z., Biesecker, D.A. et al., 1999, “Magnetohydrodynamic modeling of the solar corona during Whole Sun Month”, J. Geophys. Res., 104, 9809–9830. [DOI], [ADS] (Cited on page 7.)
Lionello, R., Linker, J.A. and Mikić, Z., 2009, “Multispectral Emission of the Sun During the First Whole Sun Month: Magnetohydrodynamic Simulations”, Astrophys. J., 690, 902–912. [DOI], [ADS] (Cited on page 11.)
Lu, Q.-M. and Wang, S., 2005, “Proton and He2+ Temperature Anisotropies in the Solar Wind Driven by Ion Cyclotron Waves”, Chin. J. Astron. Astrophys., 5, 184–192. [DOI], [ADS] (Cited on page 10.)
Maneva, Y.G., Viñas, A.F. and Ofman, L., 2013, “Turbulent heating and acceleration of He++ ions by spectra of Alfvén-cyclotron waves in the expanding solar wind: 1.5-D hybrid simulations”, J. Geophys. Res., 118, 2842–2853. [DOI], [ADS] (Cited on pages 28, 29, and 30.)
Markovskii, S.A., Vasquez, B.J. and Chandran, B.D.G., 2010, “Perpendicular Proton Heating Due to Energy Cascade of Fast Magnetosonic Waves in the Solar Corona”, Astrophys. J., 709, 1003–1008. [DOI], [ADS] (Cited on pages 8 and 10.)
Marsch, E., 1992, “On the possible role of plasma waves in the heating of chromosphere and corona”, in Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium held in Goslar, Germany, 16–20 September 1991, (Eds.) Marsch, E., Schwenn, R., COSPAR Colloquia Series, 3, pp. 65–68, Pergamon Press, Oxford; New York. [ADS] (Cited on page 8.)
Marsch, E., 2006, “Kinetic Physics of the Solar Corona and Solar Wind”, Living Rev. Solar Phys., 3, lrsp-2006-1. [DOI], [ADS]. URL (accessed 25 January 2010): http://www.livingreviews.org/lrsp-2006-1 (Cited on pages 5, 8, 27, and 31.)
Marsch, E., Mühlhäuser, K.-H., Rosenbauer, H., Schwenn, R. and Neubauer, F.M., 1982a, “Solar Wind Helium Ions: Observations of the HELIOS Solar Probes Between 0.3 and 1 AU”, J. Geophys. Res., 87(A1), 35–51. [DOI], [ADS] (Cited on page 21.)
Marsch, E., Mühlhäuser, K.-H., Schwenn, R., Rosenbauer, H., Pilipp, W. and Neubauer, F.M., 1982b, “Solar Wind Protons: Three-Dimensional Velocity Distributions and Derived Plasma Parameters Measured Between 0.3 and 1 AU”, J. Geophys. Res., 87, 52–72. [DOI], [ADS] (Cited on pages 8 and 21.)
McComas, D.J., Elliott, H.A., Schwadron, N.A., Gosling, J.T., Skoug, R.M. and Goldstein, B.E., 2003, “The three-dimensional solar wind around solar maximum”, Geophys. Res. Lett., 30, 1517. [DOI], [ADS] (Cited on page 5.)
McComas, D.J., Velli, M., Lewis, W.S. et al., 2007, “Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements”, Rev. Geophys., 45, RG1004. [DOI], [ADS] (Cited on page 37.)
McKean, M.E., Winske, D. and Gary, S.P., 1994, “Two-dimensional simulations of ion anisotropy instabilities in the magnetosheath”, J. Geophys. Res., 99, 11,141–11,154. [DOI], [ADS] (Cited on page 31.)
Mecheri, R., 2013, “Properties of Ion-Cyclotron Waves in the Open Solar Corona”, Solar Phys., 282, 133–146. [DOI], [ADS], [arXiv:1202.5742 [astro-ph.SR]] (Cited on page 8.)
Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R. and Tarditi, A., 1999, “Magnetohydrodynamic modeling of the global solar corona”, Phys. Plasmas, 6, 2217–2224. [DOI], [ADS] (Cited on page 7.)
Neugebauer, M., Goldstein, B.E., Smith, E.J. and Feldman, W.C., 1996, “Ulysses observations of differential alpha-proton streaming in the solar wind”, J. Geophys. Res., 101(A8), 17,047–17,056. [DOI], [ADS] (Cited on page 8.)
Neugebauer, M., Goldstein, B.E., Winterhalter, D., Smith, E.J., MacDowall, R.J. and Gary, S.P., 2001, “Ion distributions in large magnetic holes in the fast solar wind”, J. Geophys. Res., 106, 5635–5648. [DOI], [ADS] (Cited on page 21.)
Ofman, L., 2000, “Source regions of the slow solar wind in coronal streamers”, Geophys. Res. Lett., 27, 2885–2888. [DOI], [ADS] (Cited on page 37.)
Ofman, L., 2004a, “Three-fluid model of the heating and acceleration of the fast solar wind”, J. Geophys. Res., 109, A07102. [DOI], [ADS] (Cited on pages 7, 11, 12, 20, 21, 22, 23, 24, 25, and 37.)
Ofman, L., 2004b, “The origin of the slow solar wind in coronal streamers”, Adv. Space Res., 33, 681–688. [DOI], [ADS] (Cited on page 7.)
Ofman, L., 2005, “MHD Waves and Heating in Coronal Holes”, Space Sci. Rev., 120, 67–94. [DOI], [ADS] (Cited on pages 7 and 11.)
Ofman, L., 2010, “Hybrid model of inhomogeneous solar wind plasma heating by Alfvén wave spectrum: Parametric studies”, J. Geophys. Res., 115, A04108. [DOI], [ADS] (Cited on pages 10, 33, 34, and 36.)
Ofman, L. and Davila, J.M., 1997, “Do First Results from SOHO UVCS Indicate That the Solar Wind Is Accelerated by Solitary Waves?”, Astrophys. J. Lett., 476, L51–L54. [DOI], [ADS] (Cited on pages 7 and 16.)
Ofman, L. and Davila, J.M., 1998, “Solar wind acceleration by large-amplitude nonlinear waves: Parametric study”, J. Geophys. Res., 103(A10), 23,677–23,690. [DOI], [ADS] (Cited on pages 7, 16, 17, and 18.)
Ofman, L. and Davila, J.M., 2001, “Three-Fluid 2.5-dimensional Magnetohydrodynamic Model of the Effective Temperature in Coronal Holes”, Astrophys. J., 553, 935–940. [DOI], [ADS] (Cited on pages 7 and 24.)
Ofman, L. and Viñas, A.F., 2007, “Two-dimensional hybrid model of wave and beam heating of multi-ion solar wind plasma”, J. Geophys. Res., 112, A06104. [DOI], [ADS] (Cited on pages 10, 14, 31, 32, 34, and 35.)
Ofman, L. and Wang, T.J., 2008, “Hinode observations of transverse waves with flows in coronal loops”, Astron. Astrophys., 482, L9–L12. [DOI], [ADS] (Cited on page 9.)
Ofman, L., Viñs, A. and Gary, S.P., 2001, “Constraints on the O+5 Anisotropy in the Solar Corona”, Astrophys. J. Lett., 547, L175–L178. [DOI], [ADS] (Cited on pages 10, 25, 31, and 33.)
Ofman, L., Gary, S.P. and Viñas, A.F., 2002, “Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra”, J. Geophys. Res., 107(A12), 1461. [DOI], [ADS] (Cited on pages 10, 24, 25, 26, and 31.)
Ofman, L., Davila, J.M., Nakariakov, V.M. and Viñas, A.-F., 2005, “High-frequency Alfvén waves in multiion coronal plasma: Observational implications”, J. Geophys. Res., 110, A09102. [DOI], [ADS] (Cited on pages 10, 15, 25, 27, and 28.)
Ofman, L., Viñas, A.F. and Moya, P.S., 2011, “Hybrid models of solar wind plasma heating”, Ann. Geophys., 29, 1071–1079. [DOI], [ADS] (Cited on pages 10, 28, and 34.)
Oran, R., van der Holst, B., Landi, E., Jin, M., Sokolov, I.V. and Gombosi, T.I., 2013, “A Global Wavedriven Magnetohydrodynamic Solar Model with a Unified Treatment of Open and Closed Magnetic Field Topologies”, Astrophys. J., 778, 176. [DOI], [ADS], [arXiv:1307.4510 [astro-ph.SR]] (Cited on pages 15 and 16.)
Osterbrock, D.E., 1961, “The Heating of the Solar Chromosphere, Plages, and Corona by Magnetohydrodynamic Waves”, Astrophys. J., 134, 347. [DOI], [ADS] (Cited on page 7.)
Parker, E.N., 1958, “Dynamics of the interplanetary gas and magnetic fields”, Astrophys. J., 128, 664–676. [DOI], [ADS] (Cited on page 7.)
Parker, E.N., 1963, “The Solar-Flare Phenomenon and the Theory of Reconnection and Annihiliation of Magnetic Fields”, Astrophys. J. Suppl. Ser., 8, 177–211. [DOI], [ADS] (Cited on page 7.)
Podesta, J.J., Roberts, D.A. and Goldstein, M.L., 2006, “Power spectrum of small-scale turbulent velocity fluctuations in the solar wind”, J. Geophys. Res., 111, A10109. [DOI], [ADS] (Cited on page 9.)
Priest, E.R., 1982, Solar Magnetohydrodynamics, Geophysics and Astrophysics Monographs, 21, Reidel, Dordrecht; Boston. [ADS], [Google Books] (Cited on pages 11 and 31.)
Roussev, I.I., Gombosi, T.I., Sokolov, I.V. et al., 2003, “A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations”, Astrophys. J. Lett., 595, L57–L61. [DOI], [ADS] (Cited on page 7.)
Sittler Jr, E.C. and Guhathakurta, M., 1999, “Semiempirical Two-dimensional MagnetoHydrodynamic Model of the Solar Corona and Interplanetary Medium”, Astrophys. J., 523, 812–826. [DOI], [ADS] (Cited on page 7.)
Sittler Jr, E.C. and Ofman, L., 2006, “2D MHD model of the solar corona and solar wind: Recent results”, in Solar Influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects, Proceedings of the ILWS Workshop, Goa, India, February 19–24, 2006, (Eds.) Gopalswamy, N., Bhattacharyya, A., pp. 128–131, Quest Publications, Mumbai. [ADS]. Online version (accessed 25 January 2010): http://cdaw.gsfc.nasa.gov/publications/ilws_goa2006/ (Cited on page 7.)
Smith, C.W., Vasquez, B.J. and Hamilton, K., 2006, “Interplanetary magnetic fluctuation anisotropy in the inertial range”, J. Geophys. Res., 111, A09111. [DOI], [ADS] (Cited on page 6.)
Sokolov, I.V., van der Holst, B., Oran, R. et al., 2013, “Magnetohydrodynamic Waves and Coronal Heating: Unifying Empirical and MHD Turbulence Models”, Astrophys. J., 764, 23. [DOI], [ADS], [arXiv:1208.3141 [astro-ph.SR]] (Cited on page 16.)
Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F. and Snow, F., 1998, “The Advanced Composition Explorer”, Space Sci. Rev., 86, 1–22. [DOI], [ADS] (Cited on page 6.)
Strachan, L., Suleiman, R., Panasyuk, A.V., Biesecker, D.A. and Kohl, J.L., 2002, “Empirical densities, kinetic temperatures, and outflow velocities in the equatorial streamer belt at solar minimum”, Astrophys. J., 571, 1008–1014. [DOI], [ADS] (Cited on page 8.)
Suzuki, T.K. and Inutsuka, S.-i., 2005, “Making the Corona and the Fast Solar Wind: A Self-consistent Simulation for the Low-Frequency Alfvén Waves from the Photosphere to 0.3 AU”, Astrophys. J. Lett., 632, L49–L52. [DOI], [ADS], [arXiv:astro-ph/0506639] (Cited on pages 7, 17, and 19.)
Suzuki, T.K. and Inutsuka, S.-I., 2006, “Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds”, J. Geophys. Res., 111, A06101. [DOI], [ADS], [arXiv:astro-ph/0511006] (Cited on page 7.)
Tóth, G., Sokolov, I.V., Gombosi, T.I. et al., 2005, “Space Weather Modeling Framework: A new tool for the space science community”, J. Geophys. Res., 110(A9), A12226. [DOI], [ADS] (Cited on page 16.)
Tu, C.-Y. and Marsch, E., 1995, “MHD structures, waves and turbulence in the solar wind: Observations and theories”, Space Sci. Rev., 73(1/2), 1–210. [DOI], [ADS] (Cited on page 9.)
Tu, C.-Y. and Marsch, E., 1997, “Two-Fluid Model for Heating of the Solar Corona and Acceleration of the Solar Wind by High-Frequency Alfvén Waves”, Solar Phys., 171, 363–391. [DOI], [ADS] (Cited on page 8.)
Usmanov, A.V. and Goldstein, M.L., 2003, “A tilted-dipole MHD model of the solar corona and solar wind”, J. Geophys. Res., 108, 1354. [DOI], [ADS] (Cited on page 7.)
Usmanov, A.V., Goldstein, M.L., Besser, B.P. and Fritzer, J.M., 2000, “A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data”, J. Geophys. Res., 105(A6), 12,675–12,696. [DOI], [ADS] (Cited on pages 7 and 16.)
Uzzo, M., Strachan, L. and Vourlidas, A., 2007, “The Physical Properties of Coronal Streamers. II.”, Astrophys. J., 671, 912–925. [DOI], [ADS] (Cited on page 8.)
van der Holst, B., Manchester IV, W.B., Frazin, R.A., Vásquez, A.M., Tóth, G. and Gombosi, T.I., 2010, “A Data-driven, Two-temperature Solar Wind Model with Alfvén Waves”, Astrophys. J., 725, 1373. [DOI], [ADS] (Cited on page 16.)
Vásquez, A.M., van Ballegooijen, A.A. and Raymond, J.C., 2003, “The Effect of Proton Temperature Anisotropy on the Solar Minimum Corona and Wind”, Astrophys. J., 598, 1361–1374. [DOI], [ADS], [arXiv:astro-ph/0310846] (Cited on page 7.)
Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T. and Leamon, R.J., 2007, “Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU”, J. Geophys. Res., 112(A11), 7101. [DOI], [ADS] (Cited on page 9.)
Velli, M., 2003, “MHD turbulence and the heating of astrophysical plasmas”, Plasma Phys. Control. Fusion, 45(26), A205–A216. [DOI], [ADS] (Cited on page 8.)
Verdini, A., Velli, M. and Buchlin, E., 2009, “Turbulence in the Sub-Alfvénic Solar Wind Driven by Reflection of Low-Frequency Alfvén Waves”, Astrophys. J. Lett., 700, L39–L42. [DOI], [ADS], [arXiv:0905.2618] (Cited on page 8.)
Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S. and Dmitruk, P., 2010, “A Turbulence-Driven Model for Heating and Acceleration of the Fast Wind in Coronal Holes”, Astrophys. J. Lett., 708, L116–L120. [DOI], [ADS], [arXiv:0911.5221] (Cited on page 8.)
Voitenko, Y. and Goossens, M., 2006, “Energization of Plasma Species by Intermittent Kinetic Alfvén Waves”, Space Sci. Rev., 122, 255–270. [DOI], [ADS] (Cited on page 8.)
Wambecq, A., 1978, “Rational Runge-Kutta Methods for Solving Systems of Ordinary Differential Equations”, Computing, 20, 333–342. [DOI] (Cited on page 14.)
Winske, D. and Omidi, N., 1993, “Hybrid Codes: Methods and Applications”, in Computer Space Plasma Physics: Simulation Techniques and Software, International School for Space Simulations (ISSS-4), Kyoto, March 25–30, 1990 and Nara, April 2–6, 1990, (Eds.) Matsumoto, H., Omura, Y., pp. 103–160, Terra Scientific Publishing, Tokyo. Online version (accessed 25 January 2010): http://www.terrapub.co.jp/e-library/cspp/ (Cited on pages 9 and 16.)
Winske, D. and Quest, K.B., 1986, “Electromagnetic ion beam instabilities: Comparison of one- and two-dimensional simulations”, J. Geophys. Res., 91, 8789–8797. [DOI], [ADS] (Cited on page 31.)
Xie, H., Ofman, L. and Viñas, A.F., 2004, “Multiple ions resonant heating and acceleration by Alfvén/cyclotron fluctuations in the corona and the solar wind”, J. Geophys. Res., 109, A08103. [DOI], [ADS] (Cited on pages 10 and 31.)
Zurbuchen, T.H., 2007, “A New View of the Coupling of the Sun and the Heliosphere”, Annu. Rev. Astron. Astrophys., 45, 297–338. [DOI], [ADS] (Cited on page 37.)