WaterNet: An adaptive matching pipeline for segmenting water with volatile appearance

Yongqing Liang1, Navid H. Jafari2, Xing Luo3, Qin Chen4, Yanan Cao3, Xin Li1
1School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, USA
2Department of Civil Engineering, Louisiana State University, Baton Rouge, USA
3Department of Mechanical Engineering, Zhejiang University, Zhejiang, China
4Department of Civil Engineering, Northeastern University, Boston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440, 2015.

Caelles, S.; Maninis, K. K.; Pont-Tuset, J.; Leal-Taixé, L.; Cremers, D.; Van Gool, L. One-shot video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 221–230, 2017.

Perazzi, F.; Khoreva, A.; Benenson, R.; Schiele, B.; Sorkine-Hornung, A. Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2663–2672, 2017.

Khoreva, A.; Benenson, R.; Ilg, E.; Brox, T.; Schiele, B. Lucid data dreaming for multiple object tracking. arXiv preprint arXiv:1703.09554, 2017.

Voigtlaender, P.; Leibe, B. Online adaptation of convolutional neural networks for video object segmentation. In: Proceedings of the British Machine Vision Conference, 116.1–116.13, 2017.

Hu, Y.-T.; Huang, J.-B.; Schwing, A. G. MaskRNN: Instance level video object segmentation. In: Proceedings of the 31st Conference on Neural Information Processing Systems, 325–334, 2017.

Luiten, J.; Voigtlaender, P.; Leibe, B. PReMVOS: Proposal-generation, refinement and merging for video object segmentation. In: Computer Vision - ACCV 2018. Lecture Notes in Computer Science, Vol. 11364. Jawahar, C.; Li, H.; Mori, G.; Schindler, K. Eds. Springer Cham, 565–580, 2018.

Cheng, J. C.; Tsai, Y. H.; Hung, W. C.; Wang, S. J.; Yang, M. H. Fast and accurate online video object segmentation via tracking parts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7415–7424, 2018.

Maninis, K. K.; Caelles, S.; Chen, Y.; Pont-Tuset, J.; Leal-Taixe, L.; Cremers, D.; Van Gool, L. Video object segmentation without temporal information. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 41, No. 6, 1515–1530, 2019.

Yang, L. J.; Wang, Y. R.; Xiong, X. H.; Yang, J. C.; Katsaggelos, A. K. Efficient video object segmentation via network modulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6499–6507, 2018.

Li, X. X.; Loy, C. C. Video object segmentation with joint re-identification and attention-aware mask propagation. In: Computer Vision - ECCV 2018. Lecture Notes in Computer Science, Vol. 11207. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 93–110, 2018.

Yoon, J. S.; Rameau, F.; Kim, J.; Lee, S.; Shin, S.; Kweon, I. S. Pixel-level matching for video object segmentation using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2186–2195, 2017.

Chen, Y. H.; Pont-Tuset, J.; Montes, A.; Van Gool, L. Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1189–1198, 2018.

Hu, Y. T.; Huang, J. B.; Schwing, A. G. VideoMatch: Matching based video object segmentation. In: Computer Vision - ECCV 2018. Lecture Notes in Computer Science, Vol. 11212. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 56–73, 2018.

Voigtlaender, P.; Chai, Y. N.; Schroff, F.; Adam, H.; Leibe, B.; Chen, L. C. FEELVOS: Fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9473–9482, 2019.

Oh, S. W.; Lee, J. Y.; Sunkavalli, K.; Kim, S. J. Fast video object segmentation by reference-guided mask propagation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7376–7385, 2018.

He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778, 2016.

Zhou, B. L.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5122–5130, 2017.

Lopez-Fuentes, L.; Rossi, C.; Skinnemoen, H. River segmentation for flood monitoring. In: Proceedings of the IEEE International Conference on Big Data, 3746–3749, 2017.

Farson digital watercams. https://www.farsondigitalwatercams.com /. Accessed: 2019-09-30.

Pont-Tuset, J.; Perazzi, F.; Caelles, S.; Arbeláez, P.; Sorkine-Hornung, A.; Van Gool, L. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017.

Caelles, S.; Pont-Tuset, J.; Perazzi, F.; Montes, A.; Maninis, K. K.; Van Gool, L. The 2019 davis challenge on vos: Unsupervised multi-object segmentation. arXiv preprint arXiv:1905.00737, 2019.

Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; Van Gool, L.; Gross, M.; Sorkine-Hornung, A. A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 724–732, 2016.