Tính dễ bị tổn thương của nước trong các tầng chứa nước ven biển sử dụng các mô hình tham số AHP và AHP: tổng quan phương pháp và đánh giá trường hợp

Arabian Journal of Geosciences - Tập 14 - Trang 1-19 - 2021
Ghada Nasri1, Soumaya Hajji1, Wanissa Aydi1, Emna Boughariou1, Nabila Allouche1, Salem Bouri1
1Water, Energy and Environment Laboratory (LR3E), National School of the Engineers of Sfax, University of Sfax, Sfax, Tunisia

Tóm tắt

Khái niệm về độ dễ bị tổn thương của nước ngầm là một công cụ hữu ích cho việc lập kế hoạch và ra quyết định môi trường. Ngoài việc khai thác quá mức, các hoạt động nông nghiệp ngày càng tăng đã ảnh hưởng đến nguồn nước. Ô nhiễm nước ngầm đang trở thành một vấn đề quan trọng, đặc biệt ở các khu vực ven biển cũng bị đe dọa bởi nước biển xâm nhập. Thực tế, đã có nhiều phương pháp được phát triển để đánh giá độ dễ bị tổn thương của các tầng chứa nước. Nghiên cứu này nhằm phát triển một so sánh giữa ứng dụng của các mô hình tham số tiêu chuẩn DRASTIC và GALDIT và các mô hình kết hợp AHP-DRASTIC và AHP-GALDIT nhằm đánh giá độ dễ bị tổn thương của nước ngầm trong tầng chứa nước ven biển Mahdia-Ksour Essef. Để làm nổi bật hơn nữa việc trực quan hóa không gian của các kết quả thu được, chúng tôi đã sử dụng các kỹ thuật GIS. Kết quả cho thấy khu vực ven biển là khu vực nhạy cảm nhất với sự xâm nhập của nước biển. Các hệ số tương quan cho thấy mối quan hệ giữa các chỉ số độ dễ bị tổn thương DRASTIC và AHP-DRASTIC với nồng độ nitrat đã tăng từ 28 lên 57%, tương ứng. Hơn nữa, các hệ số tương quan cho thấy mối quan hệ giữa các chỉ số độ dễ bị tổn thương GALDIT và AHP-GALDIT với độ dẫn điện đã tăng từ 41 lên 69%, tương ứng. Điều này yêu cầu sử dụng phương pháp kết hợp AHP-GALDIT, được coi là hiệu quả hơn và mang lại kết quả tốt. Các kết quả thu được có thể được coi là hướng dẫn cho việc quản lý nước ngầm.

Từ khóa


Tài liệu tham khảo

Albinet M, Margat J (1970) Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraine. Bull BRGM 3(4):13–22 Albuquerque MTD, Sanz G, Oliveira SF, Martínez-Alegría R, Antunes IMHR (2013) Spatio-temporal groundwater vulnerability assessment—a coupled remote sensing and GIS approach for historical land cover reconstruction. Water Resour Manag 27(13):4509–4526 Aller L, Bennet T, Lehr J.H, Petty RJ, Hacket G (1987) DRASTIC : a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency Report (EPA/600/2–87/035), Robert S. Kerr Environmental Research Laboratory, p 455 Allouche N, Maanan M, Gontara M, Rollo N, Jmal I, Bouri S (2017) A global risk approach to assessing groundwater vulnerability. Environ Model Softw 88:168–182 Al-Rawabdeh AM, Al-Ansari NA, Al-Taani AA, Al-Khateeb FL, Knutsson S (2014) Modeling the risk of groundwater contamination using modified DRASTIC and GIS in Amman–Zerqa Basin, Jordan. Central Eur J Eng 4(3):264–280 Al-Zabet T (2002) Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environ Geol 43(1–2):203–208 Amouri M (1993) The overexploitation of the Djebeniana aquifer (in French). Internal Report Commissariat Régional de Développement Agricole Sfax. Sfax, Tunisia 16 p Anane M, Abidi B, Lachaal F, Limam A, Jellali S (2013) GIS-based DRASTIC, pesticide DRASTIC and the susceptibility index (SI) : comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrogeol J 21(3):715–731 Andreu JM, Alcalá FJ, Vallejos Á (2011) Pulido-Bosch A (2011) Recharge to mountainous carbonated aquifers in SE Spain: different approaches and new challenges. J Arid Environ 75:1262–1270 Arslan H (2013) Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environ Monit Assess 185(3):2439–2452 Assaf H, Saadeh M (2009) Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: the case of the Upper Litani Basin, Lebanon. Water Resour Manag 23(4):775–796 Awawdeh MM, Jaradat RA (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arab J Geosci 3(3):273–282 Aydi W, Saidi S, Chalbaoui M, Chaibi S, Ben Dhia H (2013) Evaluation of the groundwater vulnerability to pollution using an intrinsic and a specific method in a GIS environment : application to the Plain of Sidi Bouzid (Central Tunisia). Arab J Sci Eng 38(7):1815–1831 Ayed B, Jmal I, Sahal S, Bouri S (2017) Assessment of groundwater vulnerability using a specific vulnerability method : case of Maritime Djeffara shallow aquifer (Southeastern Tunisia). Arab J Geosci 10(12):262 Banton O, Bangoy LM (1997) Hydrogéologie, Multisciences Environnementale des eaux souterraines. AUPELF, Presses de l’Université de Québec, p 460 Brahim FB, Khanfir H, Bouri S (2012) Groundwater vulnerability and risk mapping of the Northern Sfax Aquifer, Tunisia. Arab J Sci Eng 37(5):1405–1421 Castany G (1967) Introduction à l’ètude des courbes de tarissements. Chronique Hydrogeol 10:23–30 Castany G (1982) Principes et méthodes de l’hydrogéologie. Dunod Université, p 236 Castany G, Margat J, ROUX J (1986) Origine, évolution et applications de l’hydrogéologie. Géologues Paris, 76:19–26 Chachadi AG (2005) Seawater intrusion mapping using modified Galdit indicator model–case study in Goa. Jalvigyan Sameeksha 20:29–45 Chachadi AG, Lobo-Ferreira JP (2001) Seawater intrusion vulnerability mapping of aquifers using GALDIT method. Proceedings of the Workshop on Modelling in Hydrogeology. Anna University, Chennai, p 143–156 Chandoul IR, Bouaziz S, Dhia HB (2015) Groundwater vulnerability assessment using GIS-based DRASTIC models in shallow aquifer of Gabes North (South East Tunisia). Arab J Geosci 8(9):7619–7629 Civita M (1994) La carte della vulnerbilita ? degli aquifer all’inquinamento. Teoria and practica. (Aquifer vulnerability maps to pollution). Pitagora Ed, Bologna. (in Italian) Ckakraborty S, Paul PK, Sikdar PK (2007) Assessing aquifer vulnerability to arsenic pollution using DRASTIC and GIS of North Bengal Plain: a case study of English Bazar Block, Malda District, West Bengal, India. J Spat Hydrol 7(1):101–121 Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm : a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15(3):483–493 Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments : a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176 Engel BA, Navulur KCS, Cooper BS, Hahn L (1996) Estimating groundwater vulnerability to non–point source pollution from nitrates and pesticides on a regional scale. In: HydroGIS 96: Applications of Geographic Information Systems in Hydrology and Water Resources Management. Proceedings of the International Association of Hydrological Sciences Publication (IAHS), Vienna: 521–526 Fagnan N, Lefebvre R, Boisvert E, Michaud Y (1998) Evaluation of groundwater vulnerability to contamination in the Laurentian Piedmont using the Drastic Method (in French). Ph.D. Thesis, University of Quebec, INRS–Georesources, Quebec, p 215 Gangadharan R, Rekha N (2015) GIS based GALDIT-AHP method for assess the impact of shrimp farms in coastal watershed of Tamil Nadu, INDIA. Int J Eng Res Technol (IJERT) 4(2) Ghobadi MH, Taheri M, Taheri K (2017) Municipal solid waste landfill siting by using analytical hierarchy process (AHP) and a proposed karst vulnerability index in Ravansar County, west of Iran. Environ Earth Sci 76(2):68 Giménez-Forcada E, Bencini A, Pranzini G (2010) Hydrogeochemical considerations about the origin of groundwater salinization in some coastal plains of Elba Island (Tuscany, Italy). Environ Geochem Health 32(3):243–257 Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39(6):549–559 Gontara M, Allouche N, Jmal I, Bouri S (2016) Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arab J Geosci 9(5):416 Gorgij AD, Moghaddam AA (2016) Vulnerability assessment of saltwater intrusion using simplified GAPDIT method: a case study of Azarshahr Plain Aquifer, East Azerbaijan, Iran. Arab J Geosci 9(2):106 Guo Q, Wang Y, Gao X, Ma T (2007) A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale : a case study in Taiyuan basin, northern China. Environ Geol 52(5):923–932 Hamza MH, Added A, Rodriguez R, Abdeljaoued S, Mammou AB (2007) A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). J Environ Manag 84(1):12–19 Hu X, Ma C, Qi H, Guo X (2018) Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model : a case in Weibei Plain, China. Environ Sci Pollut Res 25(32):32524–32539 Jamrah A, Al-Futaisi A, Rajmohan N, Al-Yaroubi S (2008) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ Monit Assess 147(1-3):125–138 Jmal I, Ayed B, Boughariou E, Allouche N, Saidi S, Hamdi M, Bouri S (2017) Assessing groundwater vulnerability to nitrate pollution using statistical approaches : a case study of Sidi Bouzid shallow aquifer, Central Tunisia. Arab J Geosci 10(16):364 Karan SK, Samadder SR, Singh V (2018) Groundwater vulnerability assessment in degraded coal mining areas using the AHP–Modified DRASTIC model. Land Degrad Dev 29(8):2351–2365 Khodabakhshi N, Heidarzadeh N, Asadollahfardi G (2017) Vulnerability assessment of an aquifer using modified GIS-based methods. J Am Water Works Assoc 109(5):E170–E182 Klassen J, Allen DM (2017) Assessing the risk of saltwater intrusion in coastal aquifers. J Hydrol 551:730–745 Kumar A, Pramod Krishna A (2019) Groundwater vulnerability and contamination risk assessment using GIS–based modified DRASTIC–LU model in hard rock aquifer system in India. Geocarto International 35(11):1149–1178 Kura NU, Ramli MF, Ibrahim S, Sulaiman WNA, Aris AZ, Tanko AI, Zaudi MA (2015) Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index–based methods. Environ Sci Pollut Res 22(2):1512–1533 Liu L, Zhou Q, Li C (2017) Evaluation of groundwater vulnerability in wudang district of Guiyang–an improved DRASTIC model based on AHP. Guizhou Sci 35:34–37 Lobo Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1 Application to the Portuguese Aquifer of Monte Gordo. 4th Inter–Celtic Colloquium on Hydrogeology and Management of Water Resources, Portugal, July 2005:11–14 Lobo-Ferreira JP, Chachadi AG Diamantino C, Henriques MJ (2007) Assessing aquifer vulnerability to seawater intrusion using the GALDIT method: Part 1-Application to the Portuguese Monte Gordo aquifer. Water in Celtic Countries: quantity, quality and climate variability: 161–171 Mahesha A, Vyshali Lathashri UA, Ramesh H (2012) Parameter estimation and vulnerability assessment of coastal unconfined aquifer to saltwater intrusion. J Hydrol Eng 17(8):933–943 Martínez-Bastida JJ, Arauzo M, Valladolid M (2010) Intrinsic and specific vulnerability of groundwater in central Spain : the risk of nitrate pollution. Hydrogeol J 18(3):681–698 Mohammad AH (2017) Assessing the groundwater vulnerability in the upper aquifers of Zarqa River Basin, Jordan using DRASTIC, SINTACS and GOD methods. Int J Water Resourc Environ Eng 9:44–53 Murat V (2000) Étude comparative des méthodes d’évaluation de la vulnérabilité intrinsèque des aquifères à la pollution : application aux aquifères granulaires du piémont laurentien. Ph.D. Thesis, University of Québec, p 291 Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr 28(1):32–53 Recinos N, Kallioras A, Pliakas F, Schuth C (2015) Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ Earth Sci 73(3):1017–1032 Ribeiro, L, Serra E, Paralta E, Nascimento J (2003) Nitrate pollution in hardrock formations: vulnerability and risk evaluation by geomathematical methods in Serpa–Brinches aquifer (South Portugal). Proceedings of International Conference on Groundwater in Fractured Rocks, Prague, Czech Republic, p. 377–378 Saaty TL (1980) The analytic hierarchy process. MaGraw–Hill, New York, pp p17–p34 Saidi S (2011) Contribution des approches paramétriques, cartographiques et statistiques à l’étude de la vulnérabilité du système aquifère phréatique de MAHDIA (TUNISIE ORIENTALE). Grade de docteur en sciences géologiques, Faculté des sciences de Sfax, p 298 Saidi S, Bouri S, Dhia HB (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59(7):1579–1588 Saidi S, Bouri S, Dhia HB (2013) Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modelling : application to the Mahdia–Ksour Essaf aquifer, Tunisia. Environ Earth Sci 70(4):1551–1568 Saidi S, Bouri S, Dhia HB, Anselme B (2009) A GIS–based susceptibility indexing method for irrigation and drinking water management planning: application to Chebba–Mellouleche Aquifer, Tunisia. Agric Water Manag 96(12):1683–1690 Schmidt S, Geyer T, Marei A, Guttman J, Sauter M (2013) Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods. J Hydrol 502:177–190 Sener E, Davraz A (2013) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method : the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol J 21(3):701–714 Sener IN, Eluru N, Bhat CR (2009) An analysis of bicycle route choice preferences in Texas, US. Transportation 36(5):511–539 Sener E, Terzi O, Sener S, Kucukkara R (2012) Modeling of water temperature based on GIS and ANN techniques: Case study of Lake Egirdir (Turkey). Ekoloji 21(83):44–52 Şener Ş, Şener E, Nas B, Karagüzel R (2010) Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Manag 30(11):2037–2046 Shetkar RV, Mahesha A (2011) Tropical, seasonal river basin development: hydrogeological analysis. J Hydrol Eng 16(3):280–291 Simsek C, Kincal C, Gunduz O (2006) A solid waste disposal site selection procedure based on groundwater vulnerability mapping. Environ Geol 49(4):620–633 Smida H, Abdellaoui C, Zairi M, Dhia HB (2010) Cartographie des zones vulnérables à la pollution agricole par la méthode DRASTIC couplée à un Système d'information géographique (SIG) : cas de la nappe phréatique de Chaffar (sud de Sfax, Tunisie). Science et changements planétaires/Sécheresse 21(2):131–146 Sophiya MS, Syed TH (2013) Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers : a case study from eastern India. Environ Earth Sci 70(3):1197–1209 Taheri K, Taheri M, Komail MS (2017) Sin–DRASTIC: a modified vulnerability mapping method for alluvial aquifer hosted by karst in the north of Hamadan province, west of Iran. In: EuroKarst 2016, Neuchâtel. Springer, Cham, pp 255–271 Tasnim Z, Tahsin S (2016) Application of the method of GALDIT for groundwater vulnerability assessment : a case of South Florida. Asian J Appl Sci Eng 5(1):27–40 Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP–DRASTIC : software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw 18(7):645–656 Umar R, Ahmed I, Alam F (2009) Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh. J Geol Soc India 73(2):193–201 US Environmental Protection Agency (1985) Standard evaluation procedure, acute toxicity test for estuarine and marine organisms (shrimp 96-h acute toxicity test). EPA 540/9-85-010. US Environmental Protection Agency, Washington, DC Varol SO, Davraz A (2010) Hydrogeological investigation of Sarkikaraagac Basin (Isparta, Turkey) and groundwater vulnerability. Water Int 35(2):177–194 Wu X, Li B, Ma C (2018) Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China. Environ Sci Pollut Res 25(13):12713–12727 Yang J, Tang Z, Jiao T, Muhammad AM (2017) Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, China. Environ Earth Sci 76(12):426 Zeng X, Wu J, Wang D, Zhu X (2016) Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion. Environ Res 148:586–594 Zghibi A, Merzougui A, Chenini I, Ergaieg K, Zouhri L, Tarhouni J (2016) Groundwater vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC index method in GIS environment. Groundw Sustain Dev 2:169–181