Sản xuất phẩm nhuộm màu đỏ huỳnh quang tan trong nước bởi Talaromyces amestolkiae

Springer Science and Business Media LLC - Tập 103 - Trang 6529-6541 - 2019
Fernanda de Oliveira1, Danielle Biscaro Pedrolli1, Maria Francisca Simas Teixeira2, Valéria de Carvalho Santos-Ebinuma1
1Department of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Campus (Araraquara), Universidade Estadual Paulista – UNESP, Araraquara, Brazil
2Culture Collection DPUA/UFAM, Universidade Federal do Amazonas, Manaus, Brazil

Tóm tắt

Việc thay thế các phẩm màu tổng hợp trong sản phẩm thực phẩm bằng các lựa chọn tự nhiên đã được thúc đẩy bởi người tiêu dùng sẵn sàng chi trả nhiều hơn cho các sản phẩm lành mạnh hơn. Tuy nhiên, sự thành công của các phẩm nhuộm màu vi sinh vật không chỉ phụ thuộc vào mức độ chấp nhận trên thị trường mà còn vào chi phí sản xuất của chúng. Các loài Talaromyces có khả năng sản xuất các phẩm nhuộm màu đỏ tan trong nước được kích thích bởi glucose và monosodium glutamate (MSG). Trong nghiên cứu này, chúng tôi đã đánh giá ảnh hưởng của một số điều kiện để sản xuất phẩm nhuộm màu đỏ tự nhiên bằng nuôi cấy chìm Talaromyces amestolkiae. Dưới các điều kiện tối ưu (g/L: glucose 10, MSG 25, MgSO4 0.012, FeSO4 0.01, CaCl2 0.015; và pH ban đầu 5.0), sản lượng đã tăng 30 lần, đạt được sản xuất phẩm nhuộm màu đỏ 13.44 UA500nm. Tùy thuộc vào pH ban đầu, các phẩm nhuộm màu với sắc thái và giá trị sắc độ khác nhau đã được thu được. Các phẩm nhuộm màu vàng đậm được tạo ra từ pH trung tính và kiềm, trong khi các phẩm nhuộm màu đỏ đậm xuất phát từ pH axit. Quang phổ phát quang của dịch nuôi cấy thu được trước và sau khi phức hợp với muối cho thấy các phẩm nhuộm màu đỏ với quang phổ phát quang màu vàng. Thông tin được tạo ra trong nghiên cứu này sẽ hữu ích cho việc xây dựng môi trường công nghiệp phục vụ cho việc nuôi cấy quy mô lớn T. amestolkiae, loài có tiềm năng sản xuất phẩm nhuộm màu lên men Talaromyces cho thực phẩm chức năng và dược phẩm.

Từ khóa

#Talaromyces amestolkiae #phẩm nhuộm màu tự nhiên #sản xuất màu đỏ #nuôi cấy chìm #thực phẩm chức năng

Tài liệu tham khảo

Arai T, Koganei K, Umemura S, Kojima R, Kato J, Kasumi T, Ogihara J (2013) Importance of the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus pigment, PP-V, production. AMB Express 3:19 Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8(2):208–215. https://doi.org/10.1016/j.mib.2005.02.016 Blanch HW, Bhavaraju SM (1976) Non-Newtonian fermentation broths: rheology and mass transfer. Biotechnol Bioeng 18(6):745–790. https://doi.org/10.1002/bit.260180602 Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23(10):1360–1372. https://doi.org/10.1139/m77-205 Chen M-H, Johns MR (1993) Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40(1):132–138 Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnár I, Li M, Shao Y, Chen F (2017) Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci 8:4917–4925. https://doi.org/10.1039/c7sc00475c Dufossé L (2017) Pigments, microbial. In: Reference module in life sciences. Elsevier, Oxford, pp 1–16. https://doi.org/10.1016/B978-0-12-809633-8.13091-2 Dufossé L (2018) Red colourants from filamentous fungi: are they ready for the food industry? J Food Compos Anal 69:156–161. https://doi.org/10.1016/j.jfca.2017.11.002 Evans PJ, Wang HY (1984) Pigment production from immobilized Monascus spp utilizing polymeric resin adsorption. App Environ Microbiol 47(6):1323–1326 Galaffu N, Bortlik K, Michel M (2015) An industry perspective on natural food colour stability. In: Colour Additives for Foods and Beverages, Woodhead publishing, pp 91–130. https://doi.org/10.1016/C2013-0-16427-6 Gao JM, Yang SX, Qin JC (2013) Azaphilonoids: chemistry and biology. Chem Rev 113:4755–4811 Hajjaj H, Klaebe A, Loret MO, Tzedakis T, Goma G, Blanc PJ (1997) Production and identification of N-glucosylrubropunctamine and Nglucosylmonascorubramine from Monascus ruber and the occurrence of electron donor-acceptor complexes in these red pigments. Appl Environ Microbiol 63:2671–2678 Hajjaj H, Klaébé A, Goma G, Blanc PJ, Barbier E, François J (2000) Medium-chain fatty acids affect Citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66(3):1120–1125 Hsu YW, Hsu LC, Liang YH, Kuo YH, Pan TM (2011) New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. J Agric Food Chem 59:4512–4518 Huang Z, Zhang S, Xu Y, Li L, Li Y (2014) Structural characterization of two new orange pigments with strong yellow fluorescence. Phytochem Lett 10:140–144. https://doi.org/10.1016/j.phytol.2014.08.020 Huang T, Tan H, Chen G, Wang L, Wu Z (2017) Rising temperature stimulates the biosynthesis of water-soluble fluorescent yellow pigments and gene expression in Monascus ruber CGMCC10910. AMB Express 7(134):1–10. https://doi.org/10.1186/s13568-017-0441-y Ismael R, Schwander H, Hendrix P (2013) Fluorescent dyes and pigments. In: Ullmann’s encyclopedia of industrial chemistry. Wiley Online Library, pp 1–22 Jůzlová P, Martínková L, Křen V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16(3):163–170 Kang B, Zhang X, Wu Z, Wang Z, Park S (2014) Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzym Microbial Technol 55:50–57. https://doi.org/10.1016/j.enzmictec.2013.12.007 Kim C, Jung H, Kim JH, Shin CS (2006) Effect of Monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorbtion and antibacterial activities of pigments. Colloid Surf B 47:153–159. https://doi.org/10.1016/j.colsurfb.2005.12.009 Krairak S, Yamamura K, Irie R, Nakajima M, Shimizu H, Chim-Anage P, Yongsmith B, Shioya S (2000) Maximizing yellow pigment production in fed-batch culture of Monascus sp. J Biosci Bioeng 90(4):363–367. https://doi.org/10.1016/S1389-1723(01)80002-5 Lakowicz JR (2006) Chapter sixteen – protein fluorescence. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 529–569 Lee B-K, Park N-H, Piao HY, Chung W-J (2001) Production of red pigments by Monascus purpureus in submerged culture. Biotechnol Bioprocess Eng 6(5):341–346 Lehto S, Buchweitz M, Klimm A, Straßburger R, Bechtold C, Ulberth F (2017) Comparison of food colour regulations in the EU and the US: a review of current provisions. Food Addit Contam A 34(3):335–355. https://doi.org/10.1080/19440049.2016.1274431 Lin TF, Demain AL (1991) Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol 36(1):70–75 Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red Monascus pigments. Arch Microbiol 162(1–2):114–119 Loret MO, Morel S (2010) Isolation and structural characterization of two new metabolites from Monascus. J Agric Food Chem 58:1800–1803 Lv J, Zhang B-B, Liu X-D, Zhang C, Chen L, Xu G-R, Cheung PCK (2017) Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relationship between fermentation conditions and mycelial morphology. J Biosci Bioeng 124(4):452–458. https://doi.org/10.1016/j.jbiosc.2017.05.010 Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54(19):7027–7035. https://doi.org/10.1021/jf062094n Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307. https://doi.org/10.1016/j.tibtech.2010.03.004 Orozco SFB, Kilikian BV (2008) Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microb Biotechnol 24(2):263–268. https://doi.org/10.1007/s11274-007-9465-9 Plackett RL, Burman JP (1946) The Design of Optimum Multifactorial Experiments. Biometrika 33(4):305–325 Sá M, Monte J, Brazinha C, Galinha CF, Crespo JG (2017) 2D fluorescence spectroscopy for monitoring Dunaliella salina concentration and integrity during membrane harvesting. Algal Res 24:325–332. https://doi.org/10.1016/j.algal.2017.04.013 Santos-Ebinuma VC, Teixeira MFS, Pessoa A Jr (2013) Submerged culture conditions for the production of alternative natural colorants by a newly isolated Penicillium purpurogenum DPUA 1275. J Microbiol Biotechnol 23:802–810. https://doi.org/10.4014/jmb.1211.11057 Shi K, Song D, Chen G, Pistolozzi M, Wu Z, Quan L (2015) Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng 120(2):145–154. https://doi.org/10.1016/j.jbiosc.2015.01.001 Simonot L, Thoury M, Delaney J (2011) Extension of the Kubelka–Munk theory for fluorescent turbid media to a nonopaque layer on a background. J Opt Soc Am A 28(7):1349–1357. https://doi.org/10.1364/JOSAA.28.001349 Singh S (2006) Impact of color on marketing. Manag Decis 44(6):783–789. https://doi.org/10.1108/00251740610673332 Stowe RA, Mayer RP (1966) Efficient screening of process variables. Ind Eng Chem 58(2):36–40 Terán-Hilares R, de Souza RA, Marcelino PF, da Silva SS, Dragone G, Mussatto SI, Santos JC (2018) Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chem 245:786–791. https://doi.org/10.1016/j.foodchem.2017.11.111 Torres FAE, Zaccarim BR, Novaes LCL, Jozala AF, Santos CA, Teixeira MFS, Santos-Ebinuma VC (2016) Natural colorants from filamentous fungi. Appl Microbiol Biotechnol 100(6):2511–2521. https://doi.org/10.1007/s00253-015-7274-x Vendruscolo F, Schmidell W, Moritz DE, Bühler RMM, de Oliveira D, Ninow JL (2016) Isoelectric point of amino acid: importance for Monascus pigment production. Biocatal Agric Biotechnol 5:179–185. https://doi.org/10.1016/j.bcab.2015.12.006 Venkatachalam M, Zelena M, Cacciola F, Ceslova L, Girard-Valenciennes E, Clerc P, Dugo P, Mondello L, Fouillaud M, Rotondo A, Giuffrida D, Dufossé L (2018) Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. J Food Compos Anal 67:38–47. https://doi.org/10.1016/j.jfca.2017.12.036 Ventura SPM, Santos-Ebinuma VC, Pereira JFB, Teixeira MFS, Pessoa A Jr, Coutinho JAP (2013) Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J Ind Microbiol Biotechnol 40:507–516. https://doi.org/10.1007/s10295-013-1237-y Vinha AF, Rodrigues F, Nunes MA, Oliveira MBPP (2018) Natural pigments and colorants in foods and beverages. In: Polyphenols: properties, recovery, and applications. Woodhead Publishing, pp 363–391 Wei WG, Yao ZJ (2005) Synthesis studies toward chloroazaphilone and vinylogous γ -pyridones: two common natural product core structures. J Org Chem 70:4585–4590 Weinberg ED (1989) Chapter seven - roles of micronutrients in secondary metabolism of Actinomycetes. In: Shapiro S (ed) Regulation of Secondary Metabolism in Actinomycetes, 3rd edn. CRC Press, Boca Raton, pp 239–261 Yilmaz N, Houbraken J, Hoekstra ES, Frisvad JC, Visagie CM, Samson RA (2012) Delimitation and characterisation of Talaromyces purpurogenus and related species. Persoonia 29(1):39–54 Zaccarim BR, de Oliveira F, Passarini MRZ, Duarte AWF, Sette LD, Jozala AF, Santos Ebinuma VC (2018) Sequencing and phylogenetic analyses of Talaromyces amestolkiae from the Amazon, a producer of natural colorants. Biotechnol Prog. https://doi.org/10.1002/btpr.2684 Zollinger H (2003) Color of organic compounds. In: Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley-VHCA and Wiley-VCH, Zurich and Weinheim, p 51