Water related impact of energy: Cost and carbon footprint analysis of water for biopharmaceuticals from tap to waste

Chemical Engineering Science: X - Tập 8 - Trang 100083 - 2020
Alessandro Luigi Cataldo1,2, Bernhard Sissolak3, Karl Metzger2,4, Kristi Budzinski5, Osamu Shirokizawa6, Markus Luchner1, Alois Jungbauer1,2, Peter Satzer1,2
1Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
2Austrian Centre of Industrial Biotechnology, Vienna, Austria
3Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
4University of Applied Sciences Campus Vienna, Life Sciences, Vienna, Austria
5Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, USA
6Life Scientia Ltd, Yokohama, Japan

Tài liệu tham khảo

Actini, 2018. Effluent Decontamination System [WWW Document]. URL http://www.actini.com/wp-content/uploads/2018/11/ACTINI-CONTINUOUS-FLOW-Decontamination-System-EN.pdf (accessed 6.10.20). Bosch Packaging Tehnology, 2017. Pharmaceutical Water (PW and WFI) in stable quality [WWW Document]. URL https://www.dcvmn.net/IMG/pdf/bosch_pharma_water_hyderabad_2018_rr.pdf (accessed 6.10.20). Budzinski, 2019, Introduction of a process mass intensity metric for biologics, New Biotechnol., 49, 37, 10.1016/j.nbt.2018.07.005 Burgstaller, 2019, Continuous integrated antibody precipitation with two-stage tangential flow microfiltration enables constant mass flow, Biotechnol. Bioeng., 116, 1053, 10.1002/bit.26922 BWT, 2020. Membrane-based WFI. Three times as good [WWW Document]. Membr.-Based WFI. URL https://www.bwt-pharma.com/en/water-for-injection/membrane-process/ (accessed 6.10.20). Carbon Pricing Dashboard [WWW Document], 2020. URL https://carbonpricingdashboard.worldbank.org/map_data (accessed 9.9.20). Carbonindipendent, 2020. Emissions from home energy use [WWW Document]. URL https://www.carbonindependent.org/15.html (accessed 6.10.20). Cataldo, 2020, Economics and ecology: Modelling of continuous primary recovery and capture scenarios for recombinant antibody production, J. Biotechnol., 308, 87, 10.1016/j.jbiotec.2019.12.001 Compare your country, 2014. Climate Change Mitigation Policies [WWW Document]. URL //www.compareyourcountry.org/climate-policies?lg=en (accessed 6.10.20). Daugelat, 2008, The design and testing of a continuous effluent sterilization system for liquid waste, Appl. Biosaf., 10.1177/153567600801300205 EEA, 2018. CO2 emission intensity [WWW Document]. Eur. Environ. Agency. URL https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5 (accessed 6.10.20). EIA, 2020. FREQUENTLY ASKED QUESTIONS [WWW Document]. URL https://www.eia.gov/tools/faqs/faq.php (accessed 6.10.20). FEPC, 2018. CO2排出実績の分析・評価 – 地球温暖化対策 | 電気事業連合会 [WWW Document]. URL https://www.fepc.or.jp/environment/warming/kyouka/index.html (accessed 6.10.20). Gregoriades, 2003, Heat inactivation of mammalian cell cultures for biowaste kill system design, Biotechnol. Prog., 19, 14, 10.1021/bp025637w IEA, 2020. Average CO2 emissions intensity of hourly electricity supply in India, 2018 and 2040 by scenario and average electricity demand in 2018 - Chart and data by the International Energy Agency. [WWW Document]. IEA. URL https://www.iea.org/data-and-statistics/charts/average-co2-emissions-intensity-of-hourly-electricity-supply-in-india-2018-and-2040-by-scenario-and-average-electricity-demand-in-2018 (accessed 6.10.20). JP17 Rev., 2016. Japanese Pharmacopoeia [WWW Document]. URL https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/JP17_REV_1.pdf (accessed 6.10.20). Klutz, 2016, Cost evaluation of antibody production processes in different operation modes, Chem. Eng. Sci., 141, 63, 10.1016/j.ces.2015.10.029 Letzner, H.-H., 2016. WFI Ph. Eur. aus Membranverfahren [WWW Document]. Pharm Ind. URL https://letzner.de/wp-content/uploads/2019/10/pharmind_10_2016_WFI_Ph_Eur_aus_Membranverfahren.pdf (accessed 6.10.20). Madabhushi, 2018, Quantitative assessment of environmental impact of biologics manufacturing using process mass intensity analysis, Biotechnol. Prog., 34, 1566, 10.1002/btpr.2702 MECO, 2019. A cost review of four system designs for water for injection (WFI) [WWW Document]. URL https://www.meco.com/cost-review-of-wfi-systems/ (accessed 6.10.20). Müller, 2014, Reducing energy consumption in pharmaceutical production processes: framework and case study, J. Pharm. Innov., 9, 212, 10.1007/s12247-014-9188-z Nieuwlaar, 2016, Final energy requirements of steam for use in environmental life cycle assessment, J. Ind. Ecol., 20, 828, 10.1111/jiec.12300 Ph.Eur.0008, 2005. Water, Purified [WWW Document]. URL http://uspbpep.com/ep50/Water,%20purified.pdf (accessed 6.10.20). Ph.Eur.0169, 2016. Reverse osmosis in Ph. Eur. monograph Water for injections (0169) [WWW Document]. URL http://uspbpep.com/ep50/Water,%20purified.pdf (accessed 6.10.20). Röder, F., 2016. Pharmawasser-Systeme wirtschaftlich betreiben. GMP-Fachwissen. Steris, 2015. Finn-Aqua® T-Series [WWW Document]. URL https://www.sterislifesciences.com/~/media/files/lifesciences_com/pdf/equipment/water%20purification/sd806_12-01-15.ashx (accessed 6.10.20). US Pharmacopoeia, 2006. Water for Injection [WWW Document]. URL http://ftp.uspbpep.com/v29240/usp29nf24s0_m88820.html (accessed 6.10.20). Van Vaerenbergh, B., Willemarck, N., Brosius, B., Leunda, A., Baldo, A., Dai Do Thi, C., 2012. Effluent Decontamination systems. Warwicker, 2010, 15 - Desiccant materials for moisture control in buildings, 365 Water Re-Cooler [WWW Document], 2020. URL http://www.quantor.technology/fileadmin/user_upload/pdf/AA.09_Q672-Q2262_V1904-GB_-_eMail.pdf (accessed 6.10.20). WHO, 2010. Good manufacturing practices: water for pharmaceutical use. Proposal for restrtiction [WWW Document]. URL https://www.who.int/medicines/services/expertcommittees/pharmprep/Water-QAS10-379_27072010.pdf (accessed 6.10.20).