Water management affects arsenic and cadmium accumulation in different rice cultivars
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128, 1120–1128.
Ahmed, Z. U., Panaullah, G. M., Gauch, H., McCouch, S. R., Tyagi, W., Kabir, M. S., et al. (2011). Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant and Soil, 338, 367–382.
Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 43, 9361–9367.
Bingham, F. T., Page, A. L., Mahler, R. J., & Ganje, T. J. (1976). Cadmium availability to rice in sludge-amended soil under flood and non-flood culture. Soil Science Society of America Journal, 40, 715–719.
Dong, F., Lu, Y., Wang, X. X., Yan, Q. Y., Zhang, L., & Pan, Q. (2011). Characteristics of arsenic accumulation in different rice (Oryza sativa L.) cultivars and its influencing factors in south China. Journal of Agro-Environment Science, 30, 214–219. (in Chinese).
Gong, Z. T. (2007). Pedogenesis and soil taxonomy. Beijing, China: Science Press.
He, J. Y., Zhu, C., Ren, Y. F., Yan, Y. P., & Jiang, D. (2006). Genotypic variation in grain cadmium concentration of lowland rice. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 169, 711–716.
Hu, L., & Ding, Y. (2008). Crop culture. Beijing: Higher Education Press.
Hua, B., Yan, W. G., Wang, J. M., Deng, B. L., & Yang, J. (2011). Arsenic accumulation in rice grains: Effects of cultivars and water management practices. Environmental Engineering Science, 28, 591–596.
Kikuchi, T., Okazaki, M., Kimura, S. D., Motobayashi, T., Baasansuren, J., Hattori, T., et al. (2008). Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains -II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials. Journal of Hazardous Materials, 154, 294–299.
Li, R. Y., Stroud, J. L., Ma, J. F., McGrath, S. P., & Zhao, F. J. (2009). Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology, 43, 3778–3783.
Liu, J. G., Zhu, Q. S., Zhang, Z. J., Xu, J. K., Yang, J. C., & Wong, M. H. (2005). Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of the Science of Food and Agriculture, 85, 147–153.
Marin, A. R., Masscheleyn, P. H., & Patrick, W. H. (1993). Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant and Soil, 152, 245–253.
Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25, 1414–1419.
Meharg, A. A., & Rahman, M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science & Technology, 37, 229–234.
Ministry of Health of China, & Standardization Administration of China. (2005). Maximum levels of contaminants in foods of China (GB 2762–2005). Beijing: Standards Press of China.
Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23, 2987–2998.
Morishita, T., Fumoto, N., Yoshizawa, T., & Kagawa, K. (1987). Varietal differences in cadmium levels of rice grains of Japonica, Indica, Javanica, and hybrid varieties produced in the same plot of a field. Soil Science and Plant Nutrition, 33, 629–637.
Norton, G. J., Duan, G. L., Dasgupta, T., Islam, M. R., Lei, M., Zhu, Y. G., et al. (2009). Environmental and genetic control of arsenic accumulation and speciation in rice grain: Comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environmental Science & Technology, 43, 8381–8386.
Norton, G. J., Islam, M. R., Duan, G. L., Lei, M., Zhu, Y. G., Deacon, C. M., et al. (2010). Arsenic shoot-grain relationships in field grown rice cultivars. Environmental Science & Technology, 44, 1471–1477.
Pillai, T. R., Yan, W. G., Agrama, H. A., James, W. D., Ibrahim, A. M. H., McClung, A. M., et al. (2010). Total grain-arsenic and arsenic-species concentrations in diverse rice cultivars under flooded conditions. Crop Science, 50, 2065–2075.
Raab, A., Williams, P. N., Meharg, A., & Feldmann, J. (2007). Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry, 4, 197–203.
Rahman, M. A., Hasegawa, H., Rahman, M. M., Islam, M. N., Miah, M. A. M., & Tasmin, A. (2007). Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh: A glass house study. Water, Air, & Soil pollution, 185, 53–61.
Somenahally, A. C., Hollister, E. B., Yan, W. G., Gentry, T. J., & Loeppert, R. H. (2011). Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science & Technology, 45, 8328–8335.
Spanu, A., Daga, L., Orlandoni, A. M., & Sanna, G. (2012). The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.). Environmental Science & Technology, 46, 8333–8340.
Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., et al. (1996). Methods of soil analysis. Part 3-chemical methods. Madison, USA: Soil Science Society of America Inc.
State Environmental Protection Administration of China. (1995). Environmental quality standards for soils (GB15618-1995). Beijing: Standards Press of China.
Sun, Y. H., Li, Z. J., Guo, B., Chu, G. X., Wei, C. Z., & Liang, Y. C. (2008). Arsenic mitigates cadmium toxicity in rice seedlings. Environmental and Experimental Botany, 64, 264–270.
Takahashi, Y., Minamikawa, R., Hattori, K. H., Kurishima, K., Kihou, N., & Yuita, K. (2004). Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology, 38, 1038–1044.
Tezuka, K., Miyadate, H., Katou, K., Kodama, I., Matsumoto, S., Kawamoto, T., et al. (2010). A single recessive gene controls cadmium translocation in the cadmium hyper accumulating rice cultivar Cho-Ko-Koku. Theoretical and Applied Genetics, 120, 1175–1182.
Tsukahara, T., Ezaki, T., Moriguchi, J., Furuki, K., Shimbo, S., Matsuda-Inoguchi, N., et al. (2003). Rice as the most influential source of cadmium intake among general Japanese population. Science of the Total Environment, 305, 41–51.
Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 12, 364–372.
Williams, P. N., Lei, M., Sun, G. X., Huang, Q., Lu, Y., Deacon, C., et al. (2009). Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environmental Science & Technology, 43, 637–642.
Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., et al. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 41, 6854–6859.
Xu, X. Y., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science & Technology, 42, 5574–5579.
Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S., & Makino, T. (2011). Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 83, 925–932.
Yu, H., Wang, J. L., Fang, W., Yuan, J. G., & Yang, Z. Y. (2006). Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment, 370, 302–309.