Water-energy nexus: Condition monitoring and the performance optimization of a hybrid cooling system
Tài liệu tham khảo
Alimoradi, 2021, Experimental investigation on improvement of wet cooling tower efficiency with diverse packing compaction using ANN-PSO algorithm, Energies, 14, 167, 10.3390/en14010167
Asvapoositkul, 2014, Comparative evaluation of hybrid (dry/wet) cooling tower performance, Appl. Therm. Eng., 71, 83, 10.1016/j.applthermaleng.2014.06.023
Biancalani, 2021, Assessing SDG indicator 6.4. 2 ‘level of water stress’ at major basins level, UCL Open Environ. Prepr., 10.14324/111.444/ucloe.000026
Chapman-Blench, 2012, Traderevolution: Training for Traders. AuthorHouse
Conejo, 2020, A review of the current environmental challenges of the steel industry and its value chain, J. Environ. Manage., 259, 10.1016/j.jenvman.2019.109782
Cortinovis, 2009, A systemic approach for optimal cooling tower operation, Energy Convers. Manag., 50, 2200, 10.1016/j.enconman.2009.04.033
Drgoňa, 2018, Approximate model predictive building control via machine learning, Appl. Energy, 218, 199, 10.1016/j.apenergy.2018.02.156
Galal, 2020, The efficiency of rainwater harvesting systems in the lebanese coastal zone, Archit. Plan. J., 26, 2
Giraldo Carvajal, 2017, Development of optimization tools for the systematic exploration of industrial symbiosis opportunities in the process industry, Universitat Politècnica de Catalunya
Golkar, 2019, Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: Case study, Appl. Therm. Eng., 149, 132, 10.1016/j.applthermaleng.2018.12.017
Gorjian, 2015, Solar desalination: A sustainable solution to water crisis in Iran, Renew. Sustain. energy Rev., 48, 571, 10.1016/j.rser.2015.04.009
Guo, 2017, Parallel hybrid model for mechanical draft counter flow wet-cooling tower, Appl. Therm. Eng., 125, 1379, 10.1016/j.applthermaleng.2017.07.138
Hosoz, 2007, Performance prediction of a cooling tower using artificial neural network, Energy Convers. Manag., 48, 1349, 10.1016/j.enconman.2006.06.024
Hu, 2018, Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system, Energy, 147, 729, 10.1016/j.energy.2018.01.074
Kozicki, 2019, The survival of mankind requires a Water Quality and Quantity Index (WQQI) and Water Applied Testing and Environmental Research (WATER) Centers, World Water Policy, 5, 55, 10.1002/wwp2.12007
Kroger, 2004
Lv, 2018, Analysis and optimization of open circulating cooling water system, Water, 10, 1592, 10.3390/w10111592
Merkel, 1925
Norouzi, 2020, The sun food-water-energy nexus governance model a case study for Iran, Water-Energy Nexus, 3, 72, 10.1016/j.wen.2020.05.005
Petruchik, 2002, Mathematical modeling of evaporative cooling of water in a mechanical-draft tower, J. Eng. Phys. Thermophys., 75, 1332, 10.1023/A:1022110809044
Qi, 2016, Performance prediction of a shower cooling tower using wavelet neural network, Appl. Therm. Eng., 108, 475, 10.1016/j.applthermaleng.2016.07.117
Samani, 2018, Combined cycle power plant with indirect dry cooling tower forecasting using artificial neural network, Decis. Sci. Lett., 7, 131, 10.5267/j.dsl.2017.6.004
Schulze, 2019, Cooling tower management in manufacturing companies: A cyber-physical system approach, J. Clean. Prod., 211, 428, 10.1016/j.jclepro.2018.11.184
T. Schulze, “Gleichungsorientierte Modellierung der Wärme-und Stoffübertragungsprozesse in Verdunstungskühltürmen,” 2015.
Singla, 2016, Tower characteristics correlation and parameter retrieval in wet-cooling tower with expanded wire mesh packing, Appl. Therm. Eng., 96, 240, 10.1016/j.applthermaleng.2015.11.063
Thiede, 2017, The water–energy nexus in manufacturing systems: Framework and systematic improvement approach, CIRP Ann., 66, 49, 10.1016/j.cirp.2017.04.108
Wang, 2013, Discrete model-based operation of cooling tower based on statistical analysis, Energy Convers. Manag., 73, 226, 10.1016/j.enconman.2013.04.025
Xu, 2015, Performance prediction of mechanical draft wet cooling tower using artificial neural network, Adv. Mater. Res., 1070-1072, 1994, 10.4028/www.scientific.net/AMR.1070-1072.1994