Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC

Atmospheric Measurement Techniques - Tập 3 Số 6 - Trang 1683-1706
Sara Lance1,2, C. A. Brock2, D. Rogers3, Joshua A. Gordon4
1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
2Earth System Research Laboratory National Oceanic and Atmospheric Administration Boulder CO USA
3National Center for Atmospheric Research, Research Aviation Facility, Broomfield, CO, USA
4National Institute of Standards & Technology, Boulder, CO, USA

Tóm tắt

Abstract. Laboratory calibrations of the Cloud Droplet Probe (CDP) sample area and droplet sizing are performed using water droplets of known size, generated at a known rate. Although calibrations with PSL and glass beads were consistent with theoretical instrument response, liquid water droplet calibrations were not, and necessitated a 2 μm shift in the manufacturer's calibration. We show that much of this response shift may be attributable to a misalignment of the optics relative to the axis of the laser beam. Comparison with an independent measure of liquid water content (LWC) during in-flight operation suggests much greater biases in the droplet size and/or droplet concentration measured by the CDP than would be expected based on the laboratory calibrations. Since the bias in CDP-LWC is strongly concentration dependent, we hypothesize that this discrepancy is a result of coincidence, when two or more droplets pass through the CDP laser beam within a very short time. The coincidence error, most frequently resulting from the passage of one droplet outside and one inside the instrument sample area at the same time, is evaluated in terms of an "extended sample area" (SAE), the area in which individual droplets can affect the sizing detector without necessarily registering on the qualifier. SAE is calibrated with standardized water droplets, and used in a Monte-Carlo simulation to estimate the effect of coincidence on the measured droplet size distributions. The simulations show that extended coincidence errors are important for the CDP at droplet concentrations even as low as 200 cm−3, and these errors are necessary to explain the trend between calculated and measured LWC observed in liquid and mixed-phase clouds during the Aerosol, Radiation and Cloud Processes Affecting Arctic Climate (ARCPAC) study. We estimate from the simulations that 60% oversizing error and 50% undercounting error can occur at droplet concentrations exceeding 400 cm−3. Modification of the optical design of the CDP is currently being explored in an effort to reduce this coincidence bias.

Từ khóa


Tài liệu tham khảo

Alekseev, G. V., Danilov, A. I., Kattsov, V. M., Kuz'mina, S. I., and Ivanov, N. E.: Changes in the Climate and Sea Ice of the Northern Hemisphere in the 20th and 21st Centuries from Data of Observations and Modeling, Atmos. Oceanic Phys., 45(6), 723–735, 2009.

Baumgardner, D.: An Analysis and Comparison of Five Water Droplet Measuring Instruments, J. Climate Appl. Met., 22, 891–910, 1983.

Baumgardner, D. and Spowart, M.: Evaluation of the Forward Scattering Spectrometer Probe. Part III: Time Response and Laser Imhomogeneity Limitations, J. Atmos. Oceanic Technol., 7, 666–672, 1990.

Baumgardner, D., Strapp, W., and Dye, J. E.: Evaluation of the Forward Scattering Spectrometer Probe – Part II: Corrections for coincidence and dead-time losses, J. Atmos. Oceanic Technol., 2, 626–632, 1985.

Biter, C. J., Dye, J. E., Huffman, D., and King, W. D.: The Drop-Size Response of the CSIRO Liquid Water Probe, J. Atmos. Oceanic Technol., 4, 359–367, 1987.

Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, John Wiley and Sons, 1983.

Brenguier, J. L., Baumgardner, D., and Baker, B.: A Review and Discussion of Processing Algorithms for FSSP Concentration Measurements, J. Atmos. Oceanic Technol., Notes and Correspondence, 11, 1409–1414, 1994.

Brenguier, J. L., Bourrianne, T., de A. Coelho, A., Isbert, J., Peytavi, R., Trevarin, D., and Weschler, P.: Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe), J. Atmos. Oceanic Technol., 15, 1077–1090, 1998.

Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R.-S., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.: Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC) project, Atmos. Chem. Phys. Discuss., 10, 27361–27434, https://doi.org/10.5194/acpd-10-27361-2010, 2010.

Burnet, F. and J.-L. Brenguier, Comparison between Standard and Modified Forward Scattering Spectrometer Probes during the Small Cumulus Microphysics Study, J. Atmos. Oceanic Technol., 19, 1516–1531, 2002.

Conant W. C., VanReken, T. M., Rissman, T. A., Varutbangkul, V., Jonsson, H. H., Nenes, A., Jimenez, J. L., Delia, A. E., Bahreini, R., Roberts, G. C., Flagan, R. C., and Seinfeld, J. H.: Aerosol-cloud drop concentration closure in warm cumulus, J. Geophys. Res., 109, D13204, https://doi.org/10.1029/2003JD004324, 2004.

Cooper, W. A.: Effects of Coincidence on Measurements with a Forward Scattering Spectrometer Probe, J. Atmos. Ocean. Technol., 5, 823–832, 1988.

Curry, J. A., Schramm, J. L., and Ebert, E. E.: Impact of Clouds on the Surface Radiation Balance of the Arctic Ocean, Meteorol. Atmos. Phys., 51, 197–217, 1993.

Curry, J. A. and Ebert, E. E.: Annual Cycle of Radiation Fluxes over the Arctic Ocean: Sensitivity to Cloud Optical Properties, J. Climate, 5, 1267–1280, 1992.

Diehl, K., Huber, G., Mitra, S. K., and Wendisch, M.: Laboratory Studies of Scattering Properties of Polluted Cloud Droplets: Implications for FSSP Measurements, J. Atmos. Oceanic Technol., 25, 1894–1898, 2008.

Feind, R. E., Detwiler, A. G., and Smith, P. L.: Cloud Liquid Water Measurements on the Armored T-28: Intercomparison between Johnson-Williams Cloud Water Meter and CSIRO (King) Liquid Water Probe, J. Atmos. Oceanic Technol., 17, 1630–1638, 2000.

Feingold, G., Furrer, R., Pilewskie, P., Remer, L. A., Min, Q., and Jonsson, H.: Aerosol Indirect Effect Studies at Southern Great Plains during the May 2003 Intensive Operations Period, J. Geophys. Res., 111, D05S14, https://doi.org/10.1029/2004JD005648, 2006.

Field, P. R., Wood, R., Brown, P. R. A., Kaye, P. H., Hirst, E., Greenaway, R., and Smith, J. A.: Ice Particle Interarrival Times Measured with a Fast FSSP, J. Atmos. Oceanic Technol., 20, 249–261, 2003.

Field, P. R., Heymsfield, A. J., and Bansemer, A.: Shattering and Particle Interarrival Times Measured by Optical Array Probes in Ice Clouds, J. Atmos. Oceanic Technol., 23, 1357–1371, 2006.

Fountoukis, C., Nenes, A., Meskhidze, N., Bahreini, R., Conant, W. C., Jonsson, H., Murphy, S., Sorooshian, A., Varutbangkul, V., Brechtel, F., Flagan, R. C., and Seinfeld, J. H.: Aerosol-cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign, J. Geophys. Res., 112, D10S30, https://doi.org/10.1029/2006JD007272, 2007.

Gardiner, B. A. and Hallett, J.: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles, J. Atmos. Oceanic Technol., 2, 171–180, 1985.

Garrett, T. J. and Zhao, C.: Increased Arctic Cloud Longwave Emissivity Associated with Pollution from Mid-Latitudes, Nature Letters, 440, 787–789, 2006.

Heymsfield, A. J.: On Measurements of Small Ice Particles in Clouds, Geophys. Res. Lett., 34, L23812, https://doi.org/10.1029/2007GL030951, 2007.

Hovenac, E. A. and Lock, J. A.: Calibration of the Forward-Scattering Spectrometer Probe: Modeling Scattering from a Multimode Laser Beam, J. Atmos. Oceanic Technol., 10, 518–525, 1993.

Jensen, E. J., Lawson, P., Baker, B., Pilson, B., Mo, Q., Heymsfield, A. J., Bansemer, A., Bui, T. P., McGill, M., Hlavka, D., Heymsfield, G., Platnick, S., Arnold, G. T., and Tanelli, S.: On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys., 9, 5519–5537, https://doi.org/10.5194/acp-9-5519-2009, 2009.

Jonnson, H. and Vonnegut, B.: Technique for Producing Uniform Small Droplets by Capillary Waves Excited in a Meniscus, Rev. Sci. Instrum., 53, 1915–1919, 1982.

King , W. D., Parkin, D. A., and Handsworth, R. J.: A Hot-Wire Liquid Water Device having Fully Calculable Response Characteristics, J. Appl. Meteor., 1809–1813, 1978.

King , W. D., Maher, C. T., and Hepburn, G. A.: Further Performance Tests on the CSIRO Liquid Water Probe, J. Appl. Meteor., 20, 195–202, 1981.

King, W. D., Dye, J. E., Strapp, J. W., Baumgardner, D., and Huffman, D.: Icing Wind Tunnel Tests on the CSIRO Liquid Water Probe, J. Oceanic Atmos. Technol, 2, 340–352, 1985.

Knollenberg, R. G.: Practical Applications of Low Power Lasers, SPIE, 92, 137–152, 1976.

Korolev, A. V. and Isaac, G. A.: Shattering During Sampling by OAPs and HVPS. Part I: Snow Particles, J. Atmos. Oceanic Technol., 22, 528–542, 2005.

Korolev, A. V., Makarov, Yu. E., and Novikov, V. S.: On the calibration of photoelectric cloud droplet spectrometer FSSP-100, TCAO, 158, 43–49, 1985 (in Russian).

Korolev, A. V., Kuznetsov, S. V., Makarov, Y. E., and Novikov, V. S.: Evaluation of Measurements of Particle Size and Sample Area from Optical Array Probes, J. Atmos. Oceanic Technol., 8, 514–522, 1991.

Korolev, A. V., Emery, E. F., Strapp, J. W., Cober, S. G., Isaac, G. A., Wasey, M., Baker, B., and Lawson, R. P.: Small ice particle observations in tropospheric clouds: fact or artifact?, Airborne Icing Instrumentation Evaluation Experiment, B. Am. Meteor. Soc., in review, 2010.

Lee, E. R.: Microdrop Generation, CRC Press LLC, Boca Raton, FL, 2003.

Lubin, D. and Vogelmann, A. M.: A Climatologically Significant Aerosol Longwave Indirect Effect in the Arctic, Nature, 439, 453–456, https://doi.org/10.1038/nature04449, 2006.

McConnell, J. R., Edwards, R. Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing, Science, 317, 1381–1384, 2007.

McFarquahar, G. M., Um, J., Freer, M., Baumgardner, D., Kok, G. L., and Mace, G.: Importance of Small Ice Crystals to Cirrus Properties: Observations from the Tropical Warm Pool International Cloud Experiment, Geophys. Res. Lett., 34, L13803, https://doi.org/10.1029/2007GL029865, 2007.

Meskhidze, N., Nenes, A., Conant, W. C., and Seinfeld, J. H.: Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL-FACE and CSTRIPE, J. Geophys. Res., 110, D16202, https://doi.org/10.1029/2004JD005703, 2005.

Nagel, D., Maixner, U., Strapp, W., and Wasey, M.: Advancements in Techniques for Calibration and Characterization of In Situ Optical Particle Measuring Probes, and Applications to the FSSP-100 Probe, J. Atmos. Oceanic Technol., 24, 745–760, https://doi.org/10.1175/JTECH2006.1, 2007.

Pinnick, R. G., Garvey, D. M., and Duncan, L. D.: Calibration of Knollenberg FSSP Light-Scattering Counters for Measurement of Cloud Droplets, J. Appl. Meteor., 20, 1049–1057, 1981.

Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, 2{nd} Ed., Kluwer Academic Publishers, the Netherlands, 2000.

Schafer, J., Mondia, J. P., Sharma, R., Lu, Z. H., and Wang, L. J.: Modular Microdrop Generator, Rev. Sci. Instrum., 78, 066102, https://doi.org/10.1063/1.2742809, 2007.

Schmidt, S., Lehmann, K., and Wendisch, M.: Minimizing Instrumental Broadening of the Drop Size Distribution with the M-Fast-FSSP, J. Oceanic Atmos. Technol, 21, 1855–1867, 2004.

Schneider, J. M. and Hendricks, C. D.: Source of Uniform Sized Liquid Droplets. Rev. Sci. Instrum., 35, 1349–1350, 1964.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, John Wiley and Sons, Inc., New York, 1998.

Serreze, M. C. and Francis, J. A.: The Arctic Amplification Debate, Climate Change, 76(3–4), 241–264, 2006.

Wendisch, M., Keil, A., and Korolev, A. V.: FSSP Characterization with Monodisperse Water Droplets, J. Atmos. Oceanic Technol., 13, 1152–1165, 1996.