Water dissociation at the Au/α-Fe2O3(0001) interface

Molecular Catalysis - Tập 446 - Trang 10-22 - 2018
Silvia A. Fuente1, Leandro F. Fortunato2, Carolina Zubieta2, Ricardo M. Ferullo2, Patricia G. Belelli1
1IFISUR, Departamento de Física, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
2INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina

Tài liệu tham khảo

Bond, 2006 Mullen, 2013, The effects of adsorbed water and gold catalysis and surface chemistry, Top. Catal., 56, 1499, 10.1007/s11244-013-0143-x Hodgson, 2009, Water adsorption and the wetting of metal surfaces, Surf. Sci. Rep., 64, 381, 10.1016/j.surfrep.2009.07.001 Ibach, 2010, Vibration spectroscopy of water on stepped gold surfaces, Surf. Sci., 604, 377, 10.1016/j.susc.2009.11.034 Liu, 2013, Adsorption and dissociation of H2O on Au(111) surface: a DFT study, Comp. Theor. Chem., 1019, 141, 10.1016/j.comptc.2013.07.009 Nadler, 2012, Effect of dispersion correction on the Au(111)-H2O interface: a first-principles study, J. Chem. Phys., 137, 114709, 10.1063/1.4752235 Lin, 2012, First-principles study of the water structure on flat and stepped gold surfaces, Surf. Sci., 606, 886, 10.1016/j.susc.2011.12.015 Schnur, 2009, Properties of metal-water interfaces studied from first principles, New J. Phys., 11, 125003, 10.1088/1367-2630/11/12/125003 Aeijelts Averink Silberova, 2006, DRIFTS study of the water-gas shift reaction over Au/Fe2O3, J. Catal., 243, 171, 10.1016/j.jcat.2006.07.010 Haruta, 1987, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C, Chem. Lett., 16, 405, 10.1246/cl.1987.405 Landon, 2005, Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells, Chem. Commun., 27, 3385, 10.1039/b505295p Andreeva, 1996, Low-temperature water-gas shift reaction on Au/α-Fe2O3 catalyst, App. Catal. A: Gen., 134, 275, 10.1016/0926-860X(95)00208-1 Andreeva, 2002, Low temperature water gas shift over gold catalysts, Gold Bull., 35, 82, 10.1007/BF03214843 Venugopal, 2004, Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behavior in the water-gas shift reaction, App. Catal. A: Gen., 258, 241, 10.1016/j.apcata.2003.09.017 Kudo, 2011, Pre-reduction of Au/iron oxide catalyst for low-temperature water-gas shift reaction below 150 °C, Catalysts, 1, 175, 10.3390/catal1010175 Soria, 2014, Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction, App. Catal. A: Gen., 470, 45, 10.1016/j.apcata.2013.10.034 Luengnaruemitchai, 2003, Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2 and Au/Fe2O3 catalysts, Catal. Comm., 4, 215, 10.1016/S1566-7367(03)00036-0 Bocuzzi, 1999, FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts, J. Catal., 188, 176, 10.1006/jcat.1999.2636 Daniells, 2005, The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts, Catal. Lett., 100, 39, 10.1007/s10562-004-3083-z Jiying, 2012, Analysis or the active Au species on Au/Fe2O3 catalyst, Rare Metal Mater. Eng., 41, 377, 10.1016/S1875-5372(12)60031-9 Daniells, 2005, The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study, J. Catal., 230, 52, 10.1016/j.jcat.2004.11.020 Minicò, 1997, FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature, Catal. Lett., 47, 273, 10.1023/A:1019081727173 Deng, 2007, Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions, Top. Catal., 44, 199, 10.1007/s11244-007-0293-9 Hodge, 2002, Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation, Catal. Today, 72, 133, 10.1016/S0920-5861(01)00487-4 Visco, 1999, X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts, Phys. Chem. Chem. Phys., 1, 2869, 10.1039/a900838a Wong, 2011, Electronic structure of metal (M = Au, Pt Pd, or Ru) bilayer modified α-Fe2O3(0001) surfaces, J. Phys. Chem. C, 115, 4656, 10.1021/jp1108043 Kiejna, 2012, Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001), J. Phys.: Condens. Matter, 24, 095003 Pabisiak, 2016, CO adsorption on small Aun (n = 1–4) structures supported on hematite. I. Adsorption on iron terminated α-Fe2O3 (0001) surface, J. Chem. Phys., 144, 044704, 10.1063/1.4940681 Pabisiak, 2016, CO adsorption on small Aun (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe2O3(0001) surface, J. Chem. Phys., 144, 044705, 10.1063/1.4940682 Nguyen, 2015, On the electronic, structural, and thermodynamic properties of Au supported on α-Fe2O3 surfaces and their interaction with CO, J. Chem. Phys., 143, 034704, 10.1063/1.4926835 Howard, 2011, A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3, Faraday Discuss., 152, 135, 10.1039/c1fd00026h Catti, 1995, Theoretical study of electronic magnetic, and structural properties of α-Fe2O3 (hematite), Phys. Rev. B, 51, 7441, 10.1103/PhysRevB.51.7441 Sandratskii, 1996, Band theory for electronic and magnetic properties of α-Fe2O3, J. Phys.: Condens. Matter, 8, 983 Punkkinen, 1999, Fe2O3 within the LSDA+U approach, J. Phys.: Condens. Matter, 11, 2341 Rollmann, 2004, First-principles calculation of the structure and magnetic phases of hematite, Phys. Rev. B, 69, 165107, 10.1103/PhysRevB.69.165107 Sandratskii, 1996, Band theory for electronic and magnetic properties of α-Fe2O3, J. Phys. Condens. Matter, 8, 983, 10.1088/0953-8984/8/8/009 Pozun, 2011, Hybrid density functional theory band structure engineering in hematite, J. Chem. Phys., 134, 224706, 10.1063/1.3598947 Cornell, 2003 Ketteler, 2001, Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure, Phys. Chem. Chem. Phys., 3, 1114, 10.1039/b009288f Kim, 2002, Site-specific valence-band photoemission study of α-Fe2O3, Phys. Rev. B, 66, 085115, 10.1103/PhysRevB.66.085115 Thevuthasana, 1999, Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction, Surf. Sci., 425, 276, 10.1016/S0039-6028(99)00200-9 Chambers, 1999, Fe termination for α-Fe2O3(0001) as grown by oxygen-plasma-assisted molecular beam epitaxy, Surf. Sci. Lett., 439, L785, 10.1016/S0039-6028(99)00766-9 Shaikhutdinov, 1999, Oxygen pressure dependence of the α-Fe2O3(0001) surface structure, Surf. Sci. Lett., 432, L627, 10.1016/S0039-6028(99)00643-3 Greene, 2005, Controlled nanoscale morphology of hematite (0001) surfaces grown by chemical vapor transport, Adv. Mater., 17, 1765, 10.1002/adma.200401459 Eggleston, 2003, The structure of hematite α(-Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations, Geochim. Cosmochim. Acta, 67, 985, 10.1016/S0016-7037(02)01200-0 Wang, 1998, The hematite α(-Fe2O3) (0001) surface: evidence for domains of distinct chemistry, Phys. Rev. Lett., 81, 1038, 10.1103/PhysRevLett.81.1038 Alvarez-Ramirez, 2004, On the geometric structure of the (0001) hematite surface, Surf. Sci., 558, 4, 10.1016/j.susc.2004.04.009 Bergermayer, 2004, Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001), Phys. Rev. B, 69, 195409, 10.1103/PhysRevB.69.195409 Rohrbach, 2004, Ab initio study of the (0001) surfaces of hematite and chromia: influence of strong electronic correlations, Phys. Rev., 70, 125426, 10.1103/PhysRevB.70.125426 Jarvis, 2007, Oxidation mechanism and ferryl domain formation on the α-Fe2O3(0001) surface, Surf. Sci., 601, 1909, 10.1016/j.susc.2007.02.022 Huang, 2016, Surface-specific DFT+U approach applied to α-Fe2O3(0001), J. Phys. Chem. C, 120, 4919, 10.1021/acs.jpcc.5b12144 Trainor, 2004, Structure and reactivity of the hydrated hematite (0001) surface, Surf. Sci., 573, 204, 10.1016/j.susc.2004.09.040 Yin, 2007, Initial stages of H2O adsorption and hydroxylation of Fe-terminated α-Fe2O3(0001) surface, Surf. Sci., 601, 2426, 10.1016/j.susc.2007.04.059 Yin, 2008, H2O adsorption and dissociation on defective hematite (0001) surfaces: a DFT study, Surf. Sci., 602, 2047, 10.1016/j.susc.2008.04.021 Nguyen, 2013, Water adsorption and dissociation on α-Fe2O3(0001): PBE+U calculations, J. Chem. Phys., 138, 194709, 10.1063/1.4804999 Pan, 2014, Hydrogen generation by water splitting on hematite (0001) surfaces: first-principles calculations, Phys. Chem. Chem. Phys., 16, 25442, 10.1039/C4CP03209H Negreiros, 2016, Effect of charges on the Interaction of a water molecule with the Fe2O3(0001) surface, J. Phys. Chem. C, 120, 11918, 10.1021/acs.jpcc.6b01743 Ovcharenko, 2016, Water adsorption and O-defect formation on Fe2O3(0001) surfaces, Phys. Chem. Chem. Phys., 18, 25560, 10.1039/C6CP05313K Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558 Kresse, 1993, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 48, 13115, 10.1103/PhysRevB.48.13115 Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251, 10.1103/PhysRevB.49.14251 Perdew, 1992, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46, 6671, 10.1103/PhysRevB.46.6671 Perdew, 1993, Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 48, 4978, 10.1103/PhysRevB.48.4978.2 Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Finger, 1980, Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars, J. Appl. Phys., 51, 5362, 10.1063/1.327451 Coey, 1971, A study of hyperfine interactions in the system (Fe1-xRhx)2O3 using the Mossbauer effect (Bonding parameters), J. Phys. C, 4, 2386, 10.1088/0022-3719/4/15/025 Liu, 2005, Origin and activity of oxidized gold in water-gas-shift catalysis, Phys. Rev. Lett., 94, 196102, 10.1103/PhysRevLett.94.196102 Chen, 2008, Examining the redox and formate mechanisms for water-gas shift reaction on Au/CeO2 using density functional theory, Surf. Sci., 602, 2828, 10.1016/j.susc.2008.06.033 Amft, 2010, Catalytic activity of small MgO-supported Au clusters towards CO oxidation: a density functional study, Phys. Rev. B, 81, 195443, 10.1103/PhysRevB.81.195443 Xue, 2012, Water monomer interaction with gold nanoclusters from van der Waals density functional theory, J. Chem. Phys., 136, 024702, 10.1063/1.3675494 Zhang, 1998, A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons, J. Chem. Phys., 109, 2604, 10.1063/1.476859 Ferullo, 2016, Interaction of atomic hydrogen with anthracene and polyacene from density functional theory, Chem. Phys. Lett., 648, 25, 10.1016/j.cplett.2016.01.067 Bader, 1990 Yang, 2015, The effect of the morphology of supported subnanometer Pt clusters on the first and key step of CO2 photoreduction, Phys. Chem. Chem. Phys., 17, 25379, 10.1039/C5CP03674G