Water desalination across multilayer graphitic carbon nitride membrane: Insights from non-equilibrium molecular dynamics simulations

Carbon - Tập 140 - Trang 131-138 - 2018
Yichang Liu1, Daoqing Xie1, Meiru Song1, Lizhi Jiang2, Gang Fu2, Lin Liu1, Jinyu Li1
1College of Chemistry, Fuzhou University, Fuzhou, 350002, China
2State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Glenn, 1998, Irrigating crops with seawater, Sci. Am., 279, 76, 10.1038/scientificamerican0898-76

Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599

Elimelech, 2011, The future of seawater desalination: energy, technology, and the environment, Science, 333, 712, 10.1126/science.1200488

Werber, 2016, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater., 1, 10.1038/natrevmats.2016.18

Wang, 2017, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nat. Nanotechnol., 12, 509, 10.1038/nnano.2017.72

Mohammad, 2015, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356, 226, 10.1016/j.desal.2014.10.043

Cohen-Tanugi, 2012, Water desalination across nanoporous graphene, Nano Lett., 12, 3602, 10.1021/nl3012853

Li, 2016, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci., 61, 104, 10.1016/j.progpolymsci.2016.03.003

Boukhvalov, 2013, Origin of anomalous water permeation through graphene oxide membrane, Nano Lett., 13, 3930, 10.1021/nl4020292

Huang, 2013, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nat. Commun., 4, 10.1038/ncomms3979

Wang, 2016, Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, Acs Appl. Mater. Inter., 8, 6211, 10.1021/acsami.5b12723

Lee, 2011, A review of reverse osmosis membrane materials for desalination-Development to date and future potential, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036

Giwa, 2016, A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis, RSC Adv., 6, 8134, 10.1039/C5RA17221G

Celebi, 2014, Ultimate permeation across atomically thin porous graphene, Science, 344, 289, 10.1126/science.1249097

O'Hern, 2012, Selective molecular transport through intrinsic defects in a single layer of CVD graphene, ACS Nano, 6, 10130, 10.1021/nn303869m

Kohler, 2018, 2D nanoporous membrane for cation removal from water: effects of ionic valence, membrane hydrophobicity, and pore size, J. Chem. Phys., 148

Sahu, 2017, Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores, Nanoscale, 9, 11424, 10.1039/C7NR03838K

Sint, 2008, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc., 130, 10.1021/ja804409f

Chen, 2017, Molecular insight into water desalination across multilayer graphene oxide membranes, Acs Appl. Mater. Inter., 9, 22826, 10.1021/acsami.7b05307

Guerrero-Aviles, 2017, Energetics and diffusion of liquid water and hydrated ions through nanopores in graphene: ab initio molecular dynamics simulation, Phys. Chem. Chem. Phys., 19, 20551, 10.1039/C7CP03449K

Wang, 2017, Molecular dynamics study on water desalination through functionalized nanoporous graphene, Carbon, 116, 120, 10.1016/j.carbon.2017.01.099

Muscatello, 2016, Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics, Acs Appl. Mater. Inter., 8, 12330, 10.1021/acsami.5b12112

Kou, 2016, Nanoporous two-dimensional MoS2 membranes for fast saline solution purification, Phys. Chem. Chem. Phys., 18, 22210, 10.1039/C6CP01967F

Lin, 2015, Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination, Chem. Commun., 51, 14921, 10.1039/C5CC05969K

Hu, 2017, Ultrafast permeation of seawater pervaporation using single-layered C2N via strain engineering, Phys. Chem. Chem. Phys., 19, 15973, 10.1039/C7CP01542A

Liu, 2018, Strained single-layer C2N membrane for efficient seawater desalination via forward osmosis: a molecular dynamics study, J. Membr. Sci., 550, 554, 10.1016/j.memsci.2017.10.067

Yang, 2016, Tunable C2N membrane for high efficient water desalination, Sci Rep-Uk, 6

Ghosh, 2014, Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets, J. Mater. Chem. C, 2, 7943, 10.1039/C4TC01385A

Ong, 2016, Graphitic carbon nitride (g-C3N4)-Based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, Chem. Rev., 116, 7159, 10.1021/acs.chemrev.6b00075

Wang, 2009, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76, 10.1038/nmat2317

Wang, 2017, Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers, Angew. Chem. Int. Ed., 56, 8974, 10.1002/anie.201701288

Ou, 2017, Tri-s-triazine-Based crystalline carbon nitride nanosheets for an improved hydrogen evolution, Adv. Mater., 29, 10.1002/adma.201700008

Becke, 1993, A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys., 98, 1372, 10.1063/1.464304

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian, Inc., Wallingford CT, 2013.

Liu, 2014, Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate, J. Chem. Phys., 141

Liu, 2016, Simulated conduction rates of water through a (6,6) carbon nanotube strongly depend on bulk properties of the model employed, J. Chem. Phys., 144

Abascal, 2005, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys., 123

Showalter, 2007, Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field, J. Chem. Theor. Comput., 3, 961, 10.1021/ct7000045

Van der Spoel, 2005, GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701, 10.1002/jcc.20291

Bussi, 2007, Canonical sampling through velocity rescaling, J. Chem. Phys., 126

Darden, 1993, Particle mesh Ewald - an N.Log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397

Zhu, 2004, Theory and simulation of water permeation in aquaporin-1, Biophys. J., 86, 50, 10.1016/S0006-3495(04)74082-5

Guardia, 2005, A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions, J. Mol. Liq., 117, 63, 10.1016/j.molliq.2004.08.004

Luzar, 1993, Structure and hydrogen-bond dynamics of water-dimethyl sulfoxide mixtures by computer-simulations, J. Chem. Phys., 98, 8160, 10.1063/1.464521

Corry, 2008, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112, 1427, 10.1021/jp709845u

Roux, 1995, The calculation of the potential of mean force using computer-simulations, Comput. Phys. Commun., 91, 275, 10.1016/0010-4655(95)00053-I

Hub, 2010, g_wham-A free weighted histogram analysis implementation including robust error and autocorrelation estimates, J. Chem. Theor. Comput., 6, 3713, 10.1021/ct100494z

Goldsmith, 2010, Molecular dynamics simulation of salt rejection in model surface-modified nanopores, J. Phys. Chem. Lett., 1, 528, 10.1021/jz900173w

Won, 2006, Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes, J. Chem. Phys., 125

Wei, 2014, Breakdown of fast water transport in graphene oxides, Phys. Rev. E, 89, 10.1103/PhysRevE.89.012113

Gravelle, 2014, Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport, J. Chem. Phys., 141

Chen, 2017, Observation and analysis of water transport through graphene oxide interlamination, J. Phys. Chem. C, 121, 1321, 10.1021/acs.jpcc.6b09753

Taherian, 2013, What is the contact angle of water on graphene?, Langmuir, 29, 1457, 10.1021/la304645w

Raj, 2013, Wettability of graphene, Nano Lett., 13, 1509, 10.1021/nl304647t

Hong, 2016, On the mechanism of hydrophilicity of graphene, Nano Lett., 16, 4447, 10.1021/acs.nanolett.6b01594

Berlind, 2011, Protein adsorption on thin films of carbon and carbon nitride monitored with in situ ellipsometry, Acta Biomater., 7, 1369, 10.1016/j.actbio.2010.10.024

Zhu, 2015, Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photocatalysts, RSC Adv., 5, 56239, 10.1039/C5RA09040G

Takaiwa, 2008, Phase diagram of water in carbon nanotubes, Proc. Natl. Acad. Sci. USA, 105, 39, 10.1073/pnas.0707917105

Won, 2007, Water permeation through a subnanometer boron nitride nanotube, J. Am. Chem. Soc., 129, 10.1021/ja0687318

Liu, 2017, A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube, J. Chem. Phys., 146

Rikhtehgaran, 2018, Multilayer nanoporous graphene as a water purification membrane, J. Nanosci. Nanotechnol., 18, 5799, 10.1166/jnn.2018.15467

Mahler, 2012, A study of the hydration of the alkali metal ions in aqueous solution, Inorg. Chem., 51, 425, 10.1021/ic2018693

Joung, 2009, Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters, J. Phys. Chem. B, 113, 13279, 10.1021/jp902584c