Water Vapour Effects on Fe–Cr Alloy Oxidation
Tóm tắt
Isothermal oxidation at 700 °C of binary Fe–Cr alloys containing 9, 17 and 25 wt% chromium was measured using continuous thermogravimetric analysis. All alloys developed thin, protective chromia scales in Ar–20O2 (vol%). Chromia scale growth on the 17 and 25 Cr alloys was faster in Ar–20O2–5H2O and Ar–5O2–20H2O. In these gases, the Fe–9Cr failed to form a chromia scale and suffered rapid breakaway oxidation, growing iron-rich oxides instead. A low oxygen potential gas, Ar–10H2–5H2O caused chromia scaling on Fe–17Cr and Fe–25Cr, but internal oxidation of Fe–9Cr. Application of Wagner’s criterion for sustaining external scale growth is shown to account satisfactorily for these observations.
Tài liệu tham khảo
C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 110, 1195 (1963).
C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).
S. Henry, J. Mougin, Y. Wouters, J. P. Petit, and A. Galerie, Materials at High Temperatures 17, 231 (2000).
A. Galerie, Y. Wouters, and M. Caillet, Material Science Forum 369–372, 237 (2001).
M. Hansel, W. J. Quadakkers, and D. J. Young, Oxidation of Metals 59, 285 (2003).
M. Michalik, M. Hansel, J. Zurek, L. Singheiser, and W. J. Quadakkers, Materials at High Temperature 22, 213 (2005).
J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Materials Science and Engineering, A 477, 259 (2008).
H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).
H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).
D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).
G. Hultquist, B. Tveten, and E. Hornlund, Oxidation of Metals 54, 1 (2000).
T. Norby, Advance Ceramic 3, 99 (1987).
X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).
J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).
A. Rahmel and J. Toboloki, Corrosion Science 5, 333 (1965).
E. Essuman, G. H. Meier, J. Zurek, M. Hansel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).
E. Essuman, G. H. Meier, J. Zurek, M. Hansel, and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).
D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2008).
N. K. Othman, J. Zhang, and D. J. Young, Materials and Corrosion (in submission).
R. Peraldi and B. A. Pint, Oxidation of Metals 61, 463 (2004).
X. G. Zheng and D. J. Young, Material Science Forum 251–4, 567 (1997).
C. Wagner, Journal of Electrochemical Society 99, 369 (1952).
D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood, Acta Materialia 15, 1421 (1967).
B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 70, 163 (2008).
C. Wagner, Zeitscrift für Elektrochemie 63, 772 (1959).
A. W. Bowen and G. M. Leak, Metallurgical Transactions A 1, 1695 (1970).