Mô Hình Đánh Giá Ngẫu Nhiên Môi Trường Nước Dựa Trên Phương Pháp TOPSIS Cải Tiến và Lý Thuyết Bayesian cùng Với Ứng Dụng Của Nó

Water Resources - Tập 46 - Trang 344-352 - 2019
Jinchao Xu1, Yaqian Chen2, Jun Zhao3, Qingfeng Hang4, Xuechun Li5
1School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Key Laboratory of Navigation Structure Construction Technology, Ministry of Transport, Nanjing, China
2Protection Institute, Guangzhou, China
3School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, China Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
4Yancheng Branch Office, Jiangsu Provincial Hydrology and Water Resources Investigation Bureau, Yancheng, China
5School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China

Tóm tắt

Dưới bối cảnh phân tích các vấn đề về nước, mô hình đánh giá ngẫu nhiên môi trường nước dựa trên lý thuyết Bayesian được đưa ra nhằm mô tả và phân tích một cách vật lý thông tin không chắc chắn. Được dẫn dắt bởi quan điểm phát triển bền vững, nghiên cứu này áp dụng khoa học tài nguyên nước, khoa học trí tuệ và khoa học thông tin để thảo luận về các chỉ số rủi ro từ ba khía cạnh: lượng nước, chất lượng nước và sinh thái nước với cơ chế tiến hóa của môi trường nước. Hệ thống chỉ số đánh giá được lựa chọn thông qua phân tích định tính và tính toán định lượng, và trọng số chỉ số được xác định bằng phương pháp TOPSIS cải tiến. Lý thuyết Bayesian được sử dụng để thiết lập mô hình đánh giá ngẫu nhiên. Quy trình này gồm việc thu được phân phối hậu nghiệm dựa trên phân phối trước với thông tin mẫu. Sau đó, các mức độ đánh giá môi trường nước được đưa ra theo nguyên tắc tối đa hóa xác suất với việc tiến hành chính sách kiểm soát. Lưu vực Taihu, Trung Quốc được lấy làm ví dụ. Kết quả cho thấy mô hình đề xuất có tính lý thuyết chặt chẽ, phương pháp linh hoạt và kết quả hợp lý, cung cấp một cách tiếp cận mới cho việc nghiên cứu tình trạng thiếu nước, phòng ngừa ô nhiễm nước và bảo vệ sinh thái nước, có thể được áp dụng rộng rãi trong quản lý môi trường nước.

Từ khóa

#mô hình đánh giá ngẫu nhiên #lý thuyết Bayesian #phương pháp TOPSIS #môi trường nước #phát triển bền vững

Tài liệu tham khảo

Andrew, A.A., Gloria, E.T.E., and George, E.N., Water resources management and integrated water resources management (IWRM) in Cameroon, Water Resour. Manag., 2010, vol. 24, pp. 871–888. Benedini, M. and Tsakiris, G., Water Quality in the Context of Water Resources Management, Springer, 2013. Carrasco, F.M., Garrote, L., Iglesias, A., and Mediero, L., Diagnosing causes of water scarcity in complex water resources systems and identifying risk management actions, Water Resour. Manag., 2013, vol. 27, pp. 1693–1705. Chen, S.Y., Water Resources and Flood Control System of Variable Fuzzy Sets Theory and Method, Dalian Univ. Technol. Press, 2005. Chen, X.H., Jiang, T., and Chen, J.H., The Water Environment Evaluation and Planning, China Water Conservancy and Hydropower Press, 2007. Christodoulou, S.E., Water resources conservancy and risk reduction under climatic instability, Water Resour. Manag., 2011, vol. 25, pp. 1059–1062. Cobbina, S.J., Anyidoho, L.Y., Nyame, F., and Hodgson, I.O.A., Water quality status of dugouts from five districts in Northern Ghana: implications for sustainable water resources management in a water stressed tropical savannah environment, Environ. Monit. Assess., 2010, vol. 167, pp. 405–416. Ding, J., Collection of Hydrology and Water Resources, Sichuan Science and Technology Press, 2006. Ding, Y.S., Liang, X., Cheng, L.J., Wang, W., and Li, R.F., An integrated intelligent cooperative model for water-related risk management and resource scheduling, Handbook on Decision Making, 2012, vol. 33, pp. 373–402. Dong, Z.C., Water Resources System Analysis, China Water Conservancy and Hydropower Press, 2008. Freni, G., Mannina, G., and Viviani, G., Assessment of the integrated urban water quality model complexity through identifiability analysis, Water Res., 2010, pp. 1–14. Gu, W.Q., Shao, D.G., Huang, X.F., and Dai, T., Multi-objective risk assessment on water resources optimal allocation, Advances in Water Resources and Hydraulic Engineering, 2009, pp. 361–366. Guana, X.J., Liub, W.K., and Chenb, M., Study on the ecological compensation standard for river basin water environment based on total pollutants control, Ecol. Indic., 2016, vol. 69, pp. 446–452. Hao, J.F., The Characteristics of Multi-Functional Landscape and the Response of the Water Environment of the Wetland in Ubanization Area–A Case Study of the New City of Xianlin, Nanjing, China, Nanjing Normal Univ., 2012. Hlavinek, P., Popovska, C., Marsalek, J., Mahrikova, I., and Kukharchyk, T., Risk Management of Water Supply and Sanitation Systems, Springer, 2009. Jin, J.L., Wu, K.Y., and Li, J.Q., Entropy coupling method of evaluating Chaohu Lake water quality security using correspondence factor analysis and projection pursuit, J. Sichuan Univ. (Engineering Sci.), 2007, vol. 39, pp. 7–13. Kılkış, Ş., Sustainable development of energy, water and environment systems index for Southeast European cities, J. Clean. Prod., 2016, vol. 130, pp. 222–234. Koundouri, P. and Papandreou, N.A., Water Resources Management Sustaining Socio-Economic Welfare, Springer, 2014. Li, P.Y., Qian, H., Wu, J.H., and Chen, J., Sensitivity analysis of TOPSIS method in water quality assessment I: Sensitivity to the parameter weights, Environ. Monit. Assess., 2013, vol. 185, pp. 2453–2461. Li, P.Y., Qian, H., Wu, J.H., and Chen, J., Sensitivity analysis of TOPSIS method in water quality assessment II: Sensitivity to the index input data, Environ. Monit. Assess., 2013, vol. 185, pp. 2463–2474. Liang, Z.M., Dai, R., and Li, B.Q., A review of hydrological uncertainty analysis based on the Bayesian theory, Adv. Water Sci., 2010, vol. 21, pp. 274–281. Litvinov, A.S., Zakonnova, A.V., and Sokolova, E.N., Hydrological structure of the Sheksna River Deep of the Rybinsk Reservoir and water quality assessment by biological parameters, Russ. Meteorol. Hydrol., 2010, vol. 35, pp. 62–67. Liu, J.L., Chen, Q.Y., and Li, Y.L., Ecological risk assessment of water environment for Luanhe River Basin based on relative risk model, Ecotoxicol., 2010, vol. 19, pp. 1400–1415. Lu, S.B., Bao, H.J., and Pan, H.L., Urban water security evaluation based on similarity measure model of Vague sets, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 15944–15950. Persson, K. and Destounia, G., Propagation of water pollution uncertainty and risk from the subsurface to the surface water system of a catchment, J. Hydrol., 2009, vol. 377, pp. 434–444. Shao, L.G. and Luan, S.G., A CVaR-Based Nonlinear Stochastic Model for water resources management, Conference on Environmental Pollution and Public Health, Wuhan, 2010, pp. 1383–1386. Shi, Y., Liang, Z.M., and Yi, Z.Z., The random assessment model of regional comprehensive drought and its application, Water Resour. Power, 2011, vol. 29, no. 9, pp. 1–3. Wang, H., Chou, Y., and Jia, Y., Development course and tendency of water resources assessment, J. Beijing Normal Univ. (Natural Sci. Edition), 2010, vol. 46, pp. 274–277. Wang, J.L., Assessment of Aquaitic Ecological Function Based on the Third Level Aquatic Ecoregion of Liaohe River Basin, Liaoning Univ., 2013. Wang, M.W., Jin, J.L., and Zhou, Y.L., Set Pair Analysis Coupling Method and Application, Sci. Press, 2014. Wang, S.C., The harmony between man and nature—China’s water problems and countermeasures, J. Beijing Normal Univ. (Natural Sci. Edition), 2009, vol. 45, pp. 441–445. Wang, W.S., Jin, J.L., and Ding, J., Stochastic Hydrology, China WaterPower Press, 2016. Wu, K.Y., Jin, J.L., and Wang, W.S., Combination evaluation model based on set pair analysis and its application, The Practice and Understanding of Mathematics, 2013, vol. 43, pp. 1–6. Xia, J., Research on vulnerability assessment of river basin water resources and adaptation countermeasures under the background of climate change, taking the advantages of resources science and technology, ensuring western innovation and development, China Natural Resour. Inst. Acad. Annual Meeting 2011, Urumqi, 2011. Xiao, J.H., Shi, G.Q., and Mao, C.M., The three gorges project pre-evaluation of valuation effects of TGP on river ecosystem service, J. Natural Resour., 2006, vol. 21, pp. 424–431. Xu, J.C., Xuan, G.X., Li, Y. Hu, Y.A., Li, Z.H., and Jin, Y., Study on the squat of extra-large scale ship in the Three Gorges Ship Lock, Ocean Eng., 2016, vol. 123, pp. 65–74. Yao, Z.M. and Zhang, J.Y., The research progress of water resources evaluation, Water Resour. Res., 2009, vol. 30, pp. 16–18. Zhao, J., Huang, Z.P., Jin, J.L., Lu, B.H., Zhang, X.M., Chen, Y.Q., Risk assessment of regional water resources and forewarning model at different time scales, J. Hydrol. Eng., 2013, vol. 18, pp. 1114–1121. Zhao, J., Jin, J.L., Guo, Q.Z., Liu, L., and Yaqian, C., Dynamic risk assessment model for flood disaster on projection pursuit cluster and its application, Stoch. Env. Res. Risk A., 2014, vol. 28, pp. 2175–2183. Zhao, J., Jin, J.L., Guo, Q.Z., Chen, Y.Q., Lu, M.X., and Tinoco, L., Forewarning model for water pollution risk based on Bayes theory, Environ. Sci. Poll. R., 2014, vol. 21, pp. 3073–3081. Zhao, J., Jin, J.L., Zhang, X.M., and Chen, Y.Q., Risk dynamic evaluation model for basin water quality based on projection pursuit cluster principle, Hydrol. Res., 2012, vol. 43, pp. 798–807.