Watch the colors: or about qualitative thinking in chemistry
Tóm tắt
The importance of watching and understanding color of chemical compounds and linking it to diverse physical and chemical properties is illustrated here using transition metal oxides at the highest achievable oxidation state of a metal. Analyses are based on qualitative thinking supported by Molecular Orbital theory in its simplest implementation.
Từ khóa
Tài liệu tham khảo
Budniak, A., Leszczyński, P.J., Masny, M., Prezelj, K., Grzeszkiewicz, M., Gilewski, T.E., Gawraczyński, J., Dobrzycki, Ł., Cyrański, M.K., Koźmiński, W., Mazej, Z., Fijałkowski, K.J., Grochala, W.: Reconnaissance of reactivity of Ag(II)SO4 one-electron oxidizer towards naphthalene derivatives. New J. Chem. 41(19), 10742–10749 (2017)
Chemistry webbook.: https://webbook.nist.gov/chemistry/. Accessed Mar 2020
Chromium trioxide.: https://en.wikipedia.org/wiki/Chromium_trioxide. Accessed Mar 2020
Coley, C.W., Jin, W., Rogers, L., Jamison, T.F., Jaakkola, T.S., Green, W.H., Barzilay, R., Jensen, K.F.: A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10(2), 370–377 (2019)
Dodsworth, E.S., Lever, A.B.P.: Correlations between electrochemical potentials and optical charge transfer energies in ruthenium bipyridine derivatives. Chem. Phys. Lett. 124(2), 152–158 (1986)
Gawraczyński, J., Mazej, Z., Blundell, S.J., Grochala, W.: AgFBF4: possibly the most strongly coupled and nearly one-dimensional quantum antiferromagnet. Superstripes 2019. In: The International Conference: Quantum physics in Complex Matter: Superconductivity, Magnetism and Ferroelectricity (2019)
Gawraczyński, J., Kurzydłowski, D., Ewings, R., Bandaru, S., Gadomski, W., Mazej, Z., Ruani, G., Bergenti, I., Jaroń, T., Ozarowski, A., Hill, S., Leszczyński, P.J., Tokár, K., Derzsi, M., Barone, P., Wohlfeld, K., Lorenzana, J., Grochala, W.: Silver route to cuprate analogs. Proc. Natl. Acad. Sci. USA 116(5), 1495–1500 (2019)
Grochala, W.: On chemical bonding between helium and oxygen. Pol. J. Chem. 83(1), 87–122 (2009)
Grochala, W.: Metastable He–O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. Phys. Chem. Chem. Phys. 14, 14860–14868 (2012)
Grochala, W.: The Maximum Hardness Principle revisited and applied to atoms and molecules. Phys. Chem. Chem. Phys. 19(46), 30964–30983 (2017a)
Grochala, W.: The Maximum Hardness Principle revisited and applied to solids (Part 2). Phys. Chem. Chem. Phys. 19(46), 30984–31006 (2017b)
Grochala, W.: On the position of helium and neon in the Periodic Table of Elements. Found. Chem. 20(3), 191–207 (2018)
Grochala, W., Edwards, P.P.: Hydrides of the chemical elements for the storage and production of hydrogen. Chem. Rev. 104(3), 1283–1315 (2004)
Grochala, W., Hoffmann, R.: Real and hypothetical intermediate-valence fluoride AgII/AgIII and AgII/AgI systems as potential superconductors. Angew. Chem. Int. Ed. Engl. 40(15), 2742–2781 (2001)
Grochala, W., Egdell, R.G., Edwards, P.P., Mazej, Z., Žemva, B.: On the covalency of the Ag–F bonds in compounds of AgI, AgII and AgIII. ChemPhysChem 4(9), 997–1001 (2003)
Hoffmann, R.: Qualitative thinking in the age of modern computational chemistry—or what Lionel Salem knows. J Mol Struct (Theochem) 424(1–2), 1–6 (1998)
Hoffmann, R., Alvarez, S., Mealli, C., Falceto, A., Cahill, T.J., Zeng, T., Manca, G.: From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116(14), 8173–8192 (2016)
Huang, W., Xing, D.-H., Lu, J.-B., Long, B., Schwarz, W.H.E., Li, J.: How much can density functional approximations (DFA) fail? The extreme case of the FeO4 species. J. Chem. Theory Comput. 12(4), 1525–1533 (2016)
Jaroń, T., Grochala, W.: Prediction of giant antiferromagnetic coupling in exotic fluorides of AgII. Phys. Status Solidi Rapid Res. Lett. 2(2), 71–73 (2008)
Jia, X., Lynch, A., Huang, Y., Danielson, M., Lang’at, I., Milder, A., Ruby, A.E., Wang, H., Friedler, S.A., Norquist, A.J., Schrier, J.: Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis. Nature 573(7773), 251–255 (2019)
Knovel Critical Tables, 2nd edn. Knovel, Norwich (2008)
Kulik, H.J.: Making machine learning a useful tool in the accelerated discovery of transition metal complexes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10(1), e1439 (2020)
Kurzydłowski, D., Grochala, W.: Prediction of extremely strong antiferromagnetic superexchange in silver(II) fluorides: challenging the oxocuprates(II). Angew. Chem. Int. Ed. Engl. 56(34), 10114–10117 (2017)
Kurzydłowski, D., Mazej, Z., Jagličić, Z., Filinchuk, Y., Grochala, W.: Structural transition and unusually strong 1D antiferromagnetic superexchange coupling in perovskite KAgF3. Chem. Commun. 49(56), 6262–6264 (2013)
Lever, A.B.P.: Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series. Inorg. Chem. 29(6), 1271–1285 (1990)
Lucier, G.M., Shen, C., Casteel, W.J., Chacón, L., Bartlett, N.: Some chemistry of high oxidation state transition metal fluorides in anhydrous HF. J. Fluor. Chem. 72(2), 157–163 (1995)
Lucier, G.M., Whalen, J.M., Bartlett, N.: High yield room temperature syntheses of KAgF4 and AgF3 and the preparation and unit cell of LiAgF4. J. Fluor. Chem. 89(1), 101–104 (1998)
Malinowski, P., Mazej, Z., Grochala, W.: Probing reactivity of the potent AgF2 oxidizer Part 1: organic compounds. Collect. Czech. Chem. Commun. 73(12), 1729–1746 (2008)
Malinowski, P., Derzsi, M., Gaweł, B., Łasocha, W., Jagličić, Z., Mazej, Z., Grochala, W.: AgIISO4: genuine sulfate of divalent silver with anomalously strong 1D antiferromagnetic interactions. Angew. Chem. Int. Ed. Engl. 49(9), 1683–1686 (2010)
Malinowski, P., Budzianowski, A., Leszczyński, P., Gaweł, B., Grochala, W.: Unusual thermal decomposition of Ag(II)SO4 yielding Ag(I)2S2O7: bending the Hammond’s rule. Eur. J. Chem. 17(38), 10524–10527 (2011)
Manganese heptoxide.: https://en.wikipedia.org/wiki/Manganese_heptoxide. Accessed Mar 2020
Pan, X., Yang, M.-Q., Fu, X., Zhang, N., Xu, Y.-J.: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 9, 3601–3614 (2013). (See this paper and references therein)
Poncini, L., Wimmer, F.L.: Color classification of coordination compounds. J. Chem. Educ. 64(12), 1001–1002 (1987)
Pyykkö, P.: Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012)
Sawatzky, G., Green, R.: The explicit role of anion states in high-valence metal oxides. In: Pavarini, E., Koch, E., van den Brink, J., Sawatzky, G. (eds.) Quantum materials: experiments and theory. Modeling and simulation, vol. 6. Forschungszentrum, Julich (2016)
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A A32, 751–767 (1976)
Szarek, P., Grochala, W.: Noble gas monoxides stabilized in dipolar cavity: a theoretical study. J. Phys. Chem. A 119(11), 2483–2489 (2015)
Test Tube Thunderstorm Demonstration.: https://www.thoughtco.com/test-tube-thunderstorm-demonstration-604255. Accessed Mar 2020
Titanium dioxide.: https://en.wikipedia.org/wiki/Titanium_dioxide. Accessed Mar 2020
Vanadium(V) oxide.: https://en.wikipedia.org/wiki/Vanadium(V)_oxide. Accessed Mar 2020