Tưới nước thải trong việc điều chỉnh tính chất đất, các yếu tố tăng trưởng và sự tích lũy kim loại nặng ở các loài Brassica khác nhau

Springer Science and Business Media LLC - Tập 191 - Trang 1-21 - 2019
Seema Sahay1,2, Saba Iqbal1, Akhtar Inam3, Meetu Gupta2, Arif Inam1
1Advance Plant Physiology, Biochemistry and Environmental Sciences Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
2Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
3Women’s College, Department of Botany, Aligarh Muslim University, Aligarh, India

Tóm tắt

Để đánh giá tác động của việc tưới nước thải (WW), bốn loài Brassica, cụ thể là B. campestris, B. juncea, B. napus và B. nigra, đã được trồng trong 2 năm tại cánh đồng nông nghiệp. Thí nghiệm năm đầu tiên (2014–2015) được thực hiện với tác động so sánh của WW và nước ngầm (GW) dưới liều lượng đồng nhất của NPK (N80P45K45, kg ha−1). Tưới nước thải cho thấy hiệu quả hơn so với nước ngầm trong việc tăng cường các tham số tăng trưởng, sinh lý và năng suất. Sự gia tăng ở tất cả các tham số là do việc sử dụng WW dẫn đến việc cải thiện các thuộc tính lý-hóa của đất so với đất từ ứng dụng nước ngầm. Thí nghiệm năm thứ hai (2015–2016) do đó chỉ đề cập đến tưới nước thải nhưng dưới sự tương tác với hai mức độ phân bón NPK (N80P45K45 và N60P30K30, kg ha−1). Kết quả của năm nay tiết lộ rằng sự gia tăng tối đa về các tham số tăng trưởng, sinh lý và năng suất được quan sát ở mức WW × N60P30K30, trong khi việc sử dụng WW × N80P45K45 không mang lại lợi ích. Biện pháp WW × N60P30K30 cũng có lợi bởi vì, ở mức điều trị này, sự tích lũy của Cr, Cu, Pb, Ni và Cd trong lá và hạt ít hơn so với WW × N80P45K45. Nghiên cứu kết luận rằng mặc dù việc sử dụng WW có thể tiết kiệm nước ngọt, nâng cao tình trạng dinh dưỡng của đất, và cân bằng N, P và K ở mức đầu vào thấp hơn, nhưng tưới nước thải đã gây ra sự tích lũy kim loại nặng trong tất cả các cây Brassica vượt xa giới hạn an toàn trong thời gian tưới kéo dài (70 ngày và 105 ngày sau khi gieo (DAS)). Tuy vậy, WW chỉ an toàn khi sử dụng trong vòng 35 DAS. Do đó, nghiên cứu đề xuất rằng cần có sự giám sát thường xuyên về nồng độ kim loại nặng trong nước tưới cũng như trong các loại rau trồng khác nhau.

Từ khóa

#tưới nước thải #cây Brassica #kim loại nặng #NPK #tính chất đất

Tài liệu tham khảo

Agricultural Statistics at a glance. (2010). Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Government of India, 2010, website: http://www.dacnet.nic.in Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). Oxford: Blackwell, Scientific. Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment, 91, 223–236. American Public Health Association (APHA). (1985). Standard methods for examination of water and wastewater (16th ed.pp. 71–553). Washington D.C: American Public Health Association. Angelova, V., & Ivanova, K. (2009). Bioaccumulation and distribution of heavy metals in black mustard (Brassica nigra Koch). Environmental Monitoring and Assessment, 153, 449–459. Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160, 83–89. Awashthi, S. K. (2000). Prevention of Food Adulteration Act no 37 of 1954. Central and state rules as amended for 1999 (IWd ed.). New Delhi: Ashoka Law House. Ayers, R. S., & Wescot, D. W. (1994). Water quality for agriculture, irrigation and drainage, paper 29, rev. 1. Rome: Food and Agriculture Organization of the United Nations. Baker, D.E. and Amacher, M.C. (1982). Nickel, copper, zinc and cadmium. In: Page et al. Eds. (pp. 332–336) Madison: ASA, SSSA. Bidwell, R. G. S. (1979). Plant physiology (2nd ed.pp. 260–261). New York: Macmillan Publishing Co.. Bunting, A., & Drennan, D. S. H. (1966). Some aspects of morphology and physiology of cereals in the vegetative phase. In F. L. Milthrope & J. D. Ivins (Eds.), The growth of cereals and grasses (pp. 20–38). London: Butterwort. Chalkoo, S., Sahay, S., Inam, A., & Iqbal, S. (2014). Application of wastewater irrigation on growth and yield of chilli under nitrogen and phosphorus fertilization. Journal of Plant Nutrition, 37, 1139–1147. Clesceri, L.S., Greenberg, A.E., Trussed, R.R. (1989). Standard method for the examination of water and wastewater. 17th Ed., 20005 (1), American Public Health Association, (pp. 40–175), Washington D. C. Curtis, L. R., & Smith, B. W. (2002). Heavy metal in fertilizers: consideration for setting regulations (pp. 1–35). Oregon: Department of Environmental and Molecular Toxicology, Oregon State University. Donahue, R. L., Miller, R. W., & Shickluma, J. C. (1977). An introduction to soils and plant growth. Englewood Cliffs: Prentice Hall. Dwivedi, R. S., & Randhawa, N. S. (1974). Evaluation of rapid test for the hidden hunger of zinc in plants. Plant and Soil, 40, 445–451. El-Bassam, N., & Tietjen, C. (1977). Municipal sludge as an organic fertilizer with special reference to the heavy metals constituents in soil organic matter studies (Vol. 2, p. 253). Vienna: IAEA (cited from Pendias and Pendias, 1992). Epstein, E., & Jafferies, R. L. (1964). The genetic basis of selective ion transport in plants. Annual Review of Plant Physiology, 15, 169–184. European Union (EC). (2001). Commission regulation (EC) No. 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, 1–77. Feigin, A., Vaisman, I., & Bielorai, H. (1984). Drip irrigation of cotton with treated municipal effluents: II. Nutrient availability in soil. Journal of Environmental Quality, 3, 234–238. Fiske, C. H., & Subba Row, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400. Food and Agriculture Organization (FAO). (2006). Fertilizer use by crops. Rome, Food and Agriculture Organization of the United Nations, Web. ftp://ftp.fao.org/agl/agll/docs/fpnb17.pdf Food and Agriculture Organization (FAO). (2010). The wealth of waste. The economics of wastewater use in agriculture. Prepared by J. Winpenny, I. Heinz and S. Koo-Oshima. FAO Water Reports, no. 35. Rome: FAO. Food and Agriculture Organization (FAO). (2011). Current world fertilizer trends and outlook to 2015. Rome: FAO. Gall, J. E., Boyd, R. S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187, 201–222. Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New York: John Welly & Sons. Gregory, F. G., & Crowther, E. (1928). A physiological study of varietal differences in plants. 1. A study of the comparative yields of barley varieties with different manurings. Annals of Botany, 42, 757–770. Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332–1334. Indian Standards Institution (ISI). (1974). Tolerance limit for industrial effluents discharged into inland surface waters. ISI Standards No. 2490, New Delhi. Indian Standards Institution (ISI). (1983). Specification for drinking and irrigation water. ISI Standards No. 10500, New Delhi. Iqbal, S., Tak, H. I., Inam, A., Inam, A., Sahay, S., & Chalkoo, S. (2015). Comparative effect of wastewater and groundwater irrigation along with nitrogenous fertilizer on growth, photosynthesis and productivity of chilli (Capsicum annuum L.). Journal of Plant Nutrition, 38(7), 1006–1021. Iqbal, S., Inam, A., Inam, A., Ashfaque, F., & Sahay, S. (2017). Potassium and waste water interaction in the regulation of photosynthetic capacity, ascorbic acid and capsaicin content in chilli (Capsicum annuum L.). Agricultural Water Management, 184, 201–210. Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communcations, 43, 1274–1279. Kaushik, A., Nisha, R., Jagjeeta, K., & Kaushik, C. P. (2005). Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. Bioresource Technology, 96, 1860–1866. Kiziloglu, F. M., Tarun, M., Sahin, U., Angin, I., Anapali, O., & Okuroglu, M. (2007). Effect of wastewater irrigation on soil and cabbage-plant (Brassica olerecea var. capitata cv. Yalova-1) chemical properties. Journal of Plant Nutrition and Soil Science, 170, 166–172. Kiziloglu, F. M., Turan, M., Sahin, U., Kuslu, Y., & Dursun, A. (2008). Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L.var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agricultural Water Management, 95, 716–724. Kloke, A. (1979). Contents of arsenic, cadmium, chromium, fluorine, lead, mercury and nickel in plants grown on contaminated soil. In: Paper presented in United Nations-ECE Symp. On effects of air-borne pollution on vegetation. Warsaw, August 20, 192. (cited from Pendias and Pendias, 1992). Kloke, A., Sauerback, D. R., & Vetter, H. (1984). The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In J. O. Nriagu (Ed.), Changing metal cycles and human health (pp. 113–141). Berlin: Springer. Lindner, R. C. (1944). Rapid analytical methods for some of the more inorganic constituents of plant tissues. Plant Physiology, 19, 76–89. Linzon, S.N. (1978). Phytotoxicology excessive levels for contaminations in soil and vegetation. Report of the Ministry of Environment, Ontario, Canada. (cited from Pendias and Pendias, 1992). Ma, S. C., Zhanga, H. B., Mab, S. T., Wanga, R., Wanga, G. X., Shaob, Y., & Li, C. X. (2015). Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotoxicology and Environmental Safety, 113, 483–490. Marschner. (2002). Mineral nutrition of higher plants (2nd ed.). London: Academic. Mengel, K., & Kirkby, E. A. (1987). Principles of plant nutrition (pp. 62–66). Bern: International Potash Institute. Moorby, J., & Besford, R. T. (1983). Mineral nutrition and growth. In A. Lauchli & R. L. Bieleski (Eds.), Encyclopedia of plant physiology (Vol. 15B, pp. 481–527). New York: Springer. Naaz, S., & Pandey, S. N. (2010). Effects of industrial waste water on heavy metal accumulation, growth and biochemical responses of lettuce (Lactuca sativa L.). Journal of Environmental Biology, 31, 273–276. Pendias, A.K. (1979). Current problems in chemical degradation of soils. In: Paper presented in Conference on Soil and Plant Analysis in Environmental Protection, Falenty, Warsaw, October 29, 7. (cited from Pendias and Pendias, 1992). Pendias, A.K., Pendias, H. (1992). Elements of group VIII. In: Trace elements in soils and plants (pp. 271–276). Boca Raton: CRC. Perronnet, K., Schwartz, C., & Morel, J. L. (2003). Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant and Soil, 249, 19–25. Rezapour, S., & Samadi, A. (2011). Soil quality response to long-term wastewater irrigation in inceptisols from a semi-arid environment. Nutrient Cycle in Agroecosystems, 91, 269–280. Sacks, M., & Bernstein, N. (2011). Utilization of reclaimed wastewater for irrigation of field-grown melons by surface and subsurface drip irrigation. Isreal Journal of Plant Science, 59, 159–169. Sahay, S., Inam, A., Inam, A., & Iqbal, S. (2015). Modulation in growth, photosynthesis and yield attributes of black mustard (B. nigra cv. IC247) by interactive effect of waste water and fly ash under different NPK levels. Cogent Food and Agriculture, 1, 1087632. Sahay, S., Iqbal, S., Ashfaque, F., & Inam, A. (2017). Effect of waste water and fly ash application on physiological determinants, yield and heavy metal contents of yellow mustard (B. campestris cv. P. Gold). Journal of Plant Nutrition, 40, 1710–1727. Salim, R., Al-Subu, M. M., & Attallah, A. (1993). Effects of root and foliar treatments with lead, cadmium and copper on the uptake, distribution and growth of radish plants. Environmental International, 19, 393–404. Salisbury, F. B., & Ross, C. (1992). Plant physiology (4th ed.). Belmont: Wadsworth. Sauer, D. B., & Burroughs, R. (1986). Disinfection of seed surfaces with sodium hypochlorite. Phytopathology, 76, 745–749. Singh, P. K., Deshbhratar, P. B., & Ramteke, D. S. (2012). Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agricultural Water Management, 103, 100–104. Sinha, S., Gupta, A. K., & Bhatt, K. (2007). Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge: involvement of antioxidants. Ecotoxicology and Environmental Safety, 67, 267–277. Streeter, J. G., & Barta, A. L. (1984). Nitrogen and minerals. In M. B. Tesar (Ed.), Physiological basis of crop growth and development (pp. 175–200). Madison: American Society of Agronomy. United Nations Environment Programme (UNEP). (2008). Vital water graphics—an overview of the state of the world’s fresh and marine waters (2nd ed.). Nairobi: UNEP. United States Department of Agriculture (USDA). (2012). www.usda.gov/oce/forum Vaughan, J. G., & Hemingway, J. S. (1959). The utilization of mustards. Economic Botany, 13(3), 196–203. Vose, P. B. (1963). Varietal differences in plant nutrition. Soil Science, 96, 361–373. World Health Organization (WHO). (2009). World health statistics 2009, ISBN 97892 4 156381 9, WHO. World Resources Institute (WRI). (2007). Annual report. 2006–07. www.wri.org/publication/wri-annual-report-2006. Wyman, R. J. (2013). The effects of population on the depletion of fresh water. Population and Development Review, 39, 687–704. https://doi.org/10.1111/j.1728-4457.2013.00634.x. Zurayk, R., Sukkariyah, B., & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air, and Soil Pollution, 127, 373–288.