Waste of batteries management: Synthesis of magnetocaloric manganite compound from the REEs mixture generated during hydrometallurgical processing of NiMH batteries
Tài liệu tham khảo
Goonan, 2011
Binnemans, 2018, Rare earths and the balance problem: how to Deal with changing markets?, J. Sustain. Metall., 4, 126, 10.1007/s40831-018-0162-8
British Geological, 2017
Müller, 2006, Development of a recycling process for nickel-metal hydride batteries, POWER J. Power Sour., 158, 1498, 10.1016/j.jpowsour.2005.10.046
Korkmaz, 2018, Recoveries of valuable metals from spent nickel metal hydride vehicle batteries via sulfation, selective roasting, and water leaching, J. Sustain. Metall., 4, 313, 10.1007/s40831-018-0169-1
Ebin, 2018, Physical separation, mechanical enrichment and recycling-oriented characterization of spent NiMH batteries, J Mater Cycles Waste Manag, 20, 2018, 10.1007/s10163-018-0751-4
Yano, 2016, Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030, J. Mater. Cycles Waste Manage., 18, 655, 10.1007/s10163-015-0360-4
A. United States Environmental Protection, 2012
Gasser, 2013, Separation and recovery of rare earth elements from spent nickel-metal-hydride batteries using synthetic adsorbent, MINPRO Int. J. Min. Proc., 121, 31, 10.1016/j.minpro.2013.02.012
Maroufi, 2018, Recovery of Rare Earth (i.e., La, Ce, Nd, and Pr) Oxides from End-of-Life Ni-MH Battery via Thermal Isolation, ACS Sust. Chem. Eng., 6, 11811, 10.1021/acssuschemeng.8b02097
Petranikova, 2017, Hydrometallurgical processes for recovery of valuable and critical metals from spent car NiMH batteries optimized in a pilot plant scale, HYDROM Hydrometall., 171, 128, 10.1016/j.hydromet.2017.05.006
Gschneidner, 2000, MAGNETOCALORIC materials, Annu. Rev. Mater. Sci., 30, 387, 10.1146/annurev.matsci.30.1.387
Dung, 2011, Mixed magnetism for refrigeration and energy conversion, Adv. Energy Mater., 1, 1215, 10.1002/aenm.201100252
Bruck, 2005, Developments in magnetocaloric refrigeration, J. Phys. D. Appl. Phys., 38, R381, 10.1088/0022-3727/38/23/R01
Gottschall, 2019, Making a cool choice: the materials library of magnetic refrigeration, AENM Adv. Energy Mater., 9
Pecharsky, 1997, Giant magnetocaloric effect in Gd5(Si2Ge2), Phys. Rev. Lett., 78, 4494, 10.1103/PhysRevLett.78.4494
Pecharsky, 1997, Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290K, Appl. Phys. Lett., 70, 3299, 10.1063/1.119206
Gutfleisch, 2005, Large magnetocaloric effect in melt-spun LaFe13-xSix, J. Appl. Phys., 97, 10M305, 10.1063/1.1847871
Fujita, 2003, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides, Phys. Rev. B, 67, 104416, 10.1103/PhysRevB.67.104416
Lyubina, 2008, La(Fe,Si)13-based magnetic refrigerants obtained by novel processing routes, J. Magn. Magn. Mater., 320, 2252, 10.1016/j.jmmm.2008.04.116
Guillou, 2014, Taming the first-order transition in giant magnetocaloric materials, Adv. Mater., 26, 2671, 10.1002/adma.201304788
Yibole, 2014, Direct measurement of the magnetocaloric effect in MnFe(P,X)(X= As, Ge, Si) materials, J. Phys. D. Appl. Phys., 47, 10.1088/0022-3727/47/7/075002
Zhao, 2019, Rare earth incorporated electrode materials for advanced energy storage, Coord. Chem. Rev., 390, 32, 10.1016/j.ccr.2019.03.011
Yang, 2020, A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains, J. Alloys Compd., 823, 153729, 10.1016/j.jallcom.2020.153729
Li, 2020, Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites, Acta Mater., 194, 354, 10.1016/j.actamat.2020.05.036
Zhang, 2020, Magnetic properties and magneto-caloric performances in RECo2B2C (RE = Gd, Tb and Dy) compounds, J. Alloys Compd., 817, 152780, 10.1016/j.jallcom.2019.152780
Dinesen, 2005, Direct and indirect measurement of the magnetocaloric effect in La(0.67)Ca(0.33-x)Sr(x)MnO(3±ẟ) (x [0;0.33]), J. Phys. Condensed Matter, 17, 6257, 10.1088/0953-8984/17/39/011
Bahl, 2012, High performance magnetocaloric perovskites for magnetic refrigeration (3 pages), Appl. Phys. Lett., 100, 121905, 10.1063/1.3695338
Phan, 2007, Review of the magnetocaloric effect in manganite materials, MAGMA J. Mag. Mag. Mater., 308, 325, 10.1016/j.jmmm.2006.07.025
Anwar, 2015, Influence of Ce addition on the structural, magnetic, and magnetocaloric properties in La0.7-xCexSr0.3MnO3 (0x0.3) ceramic compound, Ceramics Int., 41, 5821, 10.1016/j.ceramint.2015.01.011
Porcari, 2013, Direct magnetocaloric characterization and simulation of thermomagnetic cycles, Rev. Sci. Instrum., 84, 10.1063/1.4815825
Cugini, 2020, On the direct measurement of the adiabatic temperature change of magnetocaloric materials, J. Appl. Phys., 127, 123901, 10.1063/5.0002870
Rostamnejadi, 2011, Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature, J. Magn. Magn. Mater., 323, 2214, 10.1016/j.jmmm.2011.03.036
Abassi, 2016, Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1Ca0.23MnO3, Dalton Trans., 45, 4736, 10.1039/C5DT04490A
Othmani, 2009, The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds, J. Alloys Compd., 475, 46, 10.1016/j.jallcom.2008.08.005
Makni-Chakroun, 2018, Effect of A-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites, Chem. Phys. Lett., 707, 61, 10.1016/j.cplett.2018.07.039
Zarifi, 2017, Magnetocaloric effect and critical behavior in La0.8-xPrxSr0.2MnO3 (x = 0.2, 0.4, 0.5) manganites, Solid State Commun., 262, 20, 10.1016/j.ssc.2017.06.007
Guillou, 2014, Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system, J. Appl. Phys., 116, 063903, 10.1063/1.4892406
Skini, 2020, Large room temperature relative cooling power in La0.5Pr0.2Ca0.1Sr0.2MnO3, J. Alloys Compd., 827, 10.1016/j.jallcom.2020.154292
Fukamichi, 2006, Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides, J. Alloys Compd., 408-412, 307, 10.1016/j.jallcom.2005.04.022
Bjørk, 2010, Magnetocaloric properties of LaFe13−x−yCoxSiy and commercial grade Gd, J. Magn. Magn. Mater., 322, 3882, 10.1016/j.jmmm.2010.08.013
Ulyanov, 2006, Giant magnetic entropy change in La0.7Ca0.3MnO3 in low magnetic field, J. Phys. D. Appl. Phys., 40, 123, 10.1088/0022-3727/40/1/002
Pękała, 2012, Magnetocaloric and transport study of poly- and nanocrystalline composite manganites La0.7Ca0.3MnO3/La0.8Sr0.2MnO3, J. Appl. Phys., 112, 023906, 10.1063/1.4739262
Amaral, 2008, The effect of chemical distribution on the magnetocaloric effect: a case study in second-order phase transition manganites, J. Non-Cryst. Solids, 354, 5301, 10.1016/j.jnoncrysol.2008.05.078
Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04
Morrison, 2012, Evaluation of the reliability of the measurement of key magnetocaloric properties: A round robin study of La(Fe,Si,Mn)Hδ conducted by the SSEEC consortium of European laboratories, Int. J. Refrig., 35, 1528, 10.1016/j.ijrefrig.2012.04.001
Wali, 2015, A giant magnetocaloric effect with a tunable temperature transition close to room temperature in Na-deficient La0.8Na0.2−x□xMnO3 manganites, Dalton Trans., 44, 12796, 10.1039/C5DT01254F
Kallel, 2010, Large magnetocaloric effect in Ti-modified La0.70Sr0.30MnO3 perovskite, Mater. Lett., 64, 1045, 10.1016/j.matlet.2010.02.005
Mleiki, 2015, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1⩽x⩽0.4) manganites, J. Alloys Compd., 645, 559, 10.1016/j.jallcom.2015.05.043
Phan, 2015, Y-doped La0.7Ca0.3MnO3 manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions, J. Appl. Phys., 118, 143902, 10.1063/1.4933179
Rebello, 2011, Large reversible magnetocaloric effect in La0.7-xPrxCa0.3MnO3, J. Appl. Phys., 110, 013906, 10.1063/1.3603014