Waste of batteries management: Synthesis of magnetocaloric manganite compound from the REEs mixture generated during hydrometallurgical processing of NiMH batteries

Sustainable Materials and Technologies - Tập 28 - Trang e00267 - 2021
Moufida Mansouri1, Francesco Cugini2,3, Cristian Tunsu3, Massimo Solzi2,3, Franca Albertini3, Burçak Ebin1, Martina Petranikova1
1Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling, Chalmers University of Technology, Gothenburg SE -412 96, Sweden
2Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area Delle Scienze 7/A, 43124, Parma, Italy
3IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma, Italy

Tài liệu tham khảo

Goonan, 2011 Binnemans, 2018, Rare earths and the balance problem: how to Deal with changing markets?, J. Sustain. Metall., 4, 126, 10.1007/s40831-018-0162-8 British Geological, 2017 Müller, 2006, Development of a recycling process for nickel-metal hydride batteries, POWER J. Power Sour., 158, 1498, 10.1016/j.jpowsour.2005.10.046 Korkmaz, 2018, Recoveries of valuable metals from spent nickel metal hydride vehicle batteries via sulfation, selective roasting, and water leaching, J. Sustain. Metall., 4, 313, 10.1007/s40831-018-0169-1 Ebin, 2018, Physical separation, mechanical enrichment and recycling-oriented characterization of spent NiMH batteries, J Mater Cycles Waste Manag, 20, 2018, 10.1007/s10163-018-0751-4 Yano, 2016, Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030, J. Mater. Cycles Waste Manage., 18, 655, 10.1007/s10163-015-0360-4 A. United States Environmental Protection, 2012 Gasser, 2013, Separation and recovery of rare earth elements from spent nickel-metal-hydride batteries using synthetic adsorbent, MINPRO Int. J. Min. Proc., 121, 31, 10.1016/j.minpro.2013.02.012 Maroufi, 2018, Recovery of Rare Earth (i.e., La, Ce, Nd, and Pr) Oxides from End-of-Life Ni-MH Battery via Thermal Isolation, ACS Sust. Chem. Eng., 6, 11811, 10.1021/acssuschemeng.8b02097 Petranikova, 2017, Hydrometallurgical processes for recovery of valuable and critical metals from spent car NiMH batteries optimized in a pilot plant scale, HYDROM Hydrometall., 171, 128, 10.1016/j.hydromet.2017.05.006 Gschneidner, 2000, MAGNETOCALORIC materials, Annu. Rev. Mater. Sci., 30, 387, 10.1146/annurev.matsci.30.1.387 Dung, 2011, Mixed magnetism for refrigeration and energy conversion, Adv. Energy Mater., 1, 1215, 10.1002/aenm.201100252 Bruck, 2005, Developments in magnetocaloric refrigeration, J. Phys. D. Appl. Phys., 38, R381, 10.1088/0022-3727/38/23/R01 Gottschall, 2019, Making a cool choice: the materials library of magnetic refrigeration, AENM Adv. Energy Mater., 9 Pecharsky, 1997, Giant magnetocaloric effect in Gd5(Si2Ge2), Phys. Rev. Lett., 78, 4494, 10.1103/PhysRevLett.78.4494 Pecharsky, 1997, Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290K, Appl. Phys. Lett., 70, 3299, 10.1063/1.119206 Gutfleisch, 2005, Large magnetocaloric effect in melt-spun LaFe13-xSix, J. Appl. Phys., 97, 10M305, 10.1063/1.1847871 Fujita, 2003, Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides, Phys. Rev. B, 67, 104416, 10.1103/PhysRevB.67.104416 Lyubina, 2008, La(Fe,Si)13-based magnetic refrigerants obtained by novel processing routes, J. Magn. Magn. Mater., 320, 2252, 10.1016/j.jmmm.2008.04.116 Guillou, 2014, Taming the first-order transition in giant magnetocaloric materials, Adv. Mater., 26, 2671, 10.1002/adma.201304788 Yibole, 2014, Direct measurement of the magnetocaloric effect in MnFe(P,X)(X= As, Ge, Si) materials, J. Phys. D. Appl. Phys., 47, 10.1088/0022-3727/47/7/075002 Zhao, 2019, Rare earth incorporated electrode materials for advanced energy storage, Coord. Chem. Rev., 390, 32, 10.1016/j.ccr.2019.03.011 Yang, 2020, A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains, J. Alloys Compd., 823, 153729, 10.1016/j.jallcom.2020.153729 Li, 2020, Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites, Acta Mater., 194, 354, 10.1016/j.actamat.2020.05.036 Zhang, 2020, Magnetic properties and magneto-caloric performances in RECo2B2C (RE = Gd, Tb and Dy) compounds, J. Alloys Compd., 817, 152780, 10.1016/j.jallcom.2019.152780 Dinesen, 2005, Direct and indirect measurement of the magnetocaloric effect in La(0.67)Ca(0.33-x)Sr(x)MnO(3±ẟ) (x [0;0.33]), J. Phys. Condensed Matter, 17, 6257, 10.1088/0953-8984/17/39/011 Bahl, 2012, High performance magnetocaloric perovskites for magnetic refrigeration (3 pages), Appl. Phys. Lett., 100, 121905, 10.1063/1.3695338 Phan, 2007, Review of the magnetocaloric effect in manganite materials, MAGMA J. Mag. Mag. Mater., 308, 325, 10.1016/j.jmmm.2006.07.025 Anwar, 2015, Influence of Ce addition on the structural, magnetic, and magnetocaloric properties in La0.7-xCexSr0.3MnO3 (0x0.3) ceramic compound, Ceramics Int., 41, 5821, 10.1016/j.ceramint.2015.01.011 Porcari, 2013, Direct magnetocaloric characterization and simulation of thermomagnetic cycles, Rev. Sci. Instrum., 84, 10.1063/1.4815825 Cugini, 2020, On the direct measurement of the adiabatic temperature change of magnetocaloric materials, J. Appl. Phys., 127, 123901, 10.1063/5.0002870 Rostamnejadi, 2011, Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature, J. Magn. Magn. Mater., 323, 2214, 10.1016/j.jmmm.2011.03.036 Abassi, 2016, Theoretical investigations on the magnetocaloric and electrical properties of a perovskite manganite La0.67Ba0.1Ca0.23MnO3, Dalton Trans., 45, 4736, 10.1039/C5DT04490A Othmani, 2009, The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds, J. Alloys Compd., 475, 46, 10.1016/j.jallcom.2008.08.005 Makni-Chakroun, 2018, Effect of A-site deficiency on investigation of structural, magnetic and magnetocaloric behaviors for (LaSr)-lacunar manganites, Chem. Phys. Lett., 707, 61, 10.1016/j.cplett.2018.07.039 Zarifi, 2017, Magnetocaloric effect and critical behavior in La0.8-xPrxSr0.2MnO3 (x = 0.2, 0.4, 0.5) manganites, Solid State Commun., 262, 20, 10.1016/j.ssc.2017.06.007 Guillou, 2014, Magnetocaloric effect, cyclability and coefficient of refrigerant performance in the MnFe(P, Si, B) system, J. Appl. Phys., 116, 063903, 10.1063/1.4892406 Skini, 2020, Large room temperature relative cooling power in La0.5Pr0.2Ca0.1Sr0.2MnO3, J. Alloys Compd., 827, 10.1016/j.jallcom.2020.154292 Fukamichi, 2006, Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides, J. Alloys Compd., 408-412, 307, 10.1016/j.jallcom.2005.04.022 Bjørk, 2010, Magnetocaloric properties of LaFe13−x−yCoxSiy and commercial grade Gd, J. Magn. Magn. Mater., 322, 3882, 10.1016/j.jmmm.2010.08.013 Ulyanov, 2006, Giant magnetic entropy change in La0.7Ca0.3MnO3 in low magnetic field, J. Phys. D. Appl. Phys., 40, 123, 10.1088/0022-3727/40/1/002 Pękała, 2012, Magnetocaloric and transport study of poly- and nanocrystalline composite manganites La0.7Ca0.3MnO3/La0.8Sr0.2MnO3, J. Appl. Phys., 112, 023906, 10.1063/1.4739262 Amaral, 2008, The effect of chemical distribution on the magnetocaloric effect: a case study in second-order phase transition manganites, J. Non-Cryst. Solids, 354, 5301, 10.1016/j.jnoncrysol.2008.05.078 Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04 Morrison, 2012, Evaluation of the reliability of the measurement of key magnetocaloric properties: A round robin study of La(Fe,Si,Mn)Hδ conducted by the SSEEC consortium of European laboratories, Int. J. Refrig., 35, 1528, 10.1016/j.ijrefrig.2012.04.001 Wali, 2015, A giant magnetocaloric effect with a tunable temperature transition close to room temperature in Na-deficient La0.8Na0.2−x□xMnO3 manganites, Dalton Trans., 44, 12796, 10.1039/C5DT01254F Kallel, 2010, Large magnetocaloric effect in Ti-modified La0.70Sr0.30MnO3 perovskite, Mater. Lett., 64, 1045, 10.1016/j.matlet.2010.02.005 Mleiki, 2015, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1⩽x⩽0.4) manganites, J. Alloys Compd., 645, 559, 10.1016/j.jallcom.2015.05.043 Phan, 2015, Y-doped La0.7Ca0.3MnO3 manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions, J. Appl. Phys., 118, 143902, 10.1063/1.4933179 Rebello, 2011, Large reversible magnetocaloric effect in La0.7-xPrxCa0.3MnO3, J. Appl. Phys., 110, 013906, 10.1063/1.3603014