Wall Polynomials on the Real Line: A Classical Approach to OPRL Khrushchev’s Formula
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cedzich, C., Grünbaum, F.A., Velázquez, L., Werner, A.H., Werner, R.F.: A quantum dynamical approach to matrix Khrushchev’s formulas. Commun. Pure Appl. Math. 69, 909–957 (2016)
Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, San Diego (2000)
Dueñas, H., Huertas, E.J., Marcellán, F.: Asymptotic properties of Laguerre–Sobolev-type orthogonal polynomials. Numer. Algorithms 60(1), 51–73 (2012)
Gesztesy, F., Tsekanovskii, E.: On matrix-valued Herglotz functions. Math. Nachr. 218, 61–138 (2000)
Grünbaum, F.A., Velázquez, L.: A generalization of Schur functions: applications to Nevanlinna functions, orthogonal polynomials, random walks and unitary open quantum walks. Adv. Math. 326, 352–464 (2018)
Helly, E.: Über lineare Funktionaloperationen. Wien. Ber. 121, 265–297 (1912)
Ismail, M.E.H., Letessier, J., Valent, G.: Linear birth and death models and associated Laguerre and Meixner polynomials. J. Approx. Theory 56, 337–348 (1988)
Kac, I.S., Krein, M. G., R-functions–analytic functions mapping the upper halfplane into itself. In: American Mathematical Society Translations, Series 2, vol. 103: Nine papers in analysis. AMS, Providence (1974)
Khrushchev, S.: Schur’s algorithm, orthogonal polynomials, and convergence of Wall’s continued fractions in $$L^2($$. J. Approx. Theory 108, 161–248 (2001)
Khrushchev, S.: Classification theorems for general orthogonal polynomials on the unit circle. J. Approx. Theory 116, 268–342 (2002)
Montel, P.: Leçons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927. Reprinted by Chelsea Publ. Co., New York (1974)
Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)
Simon, B.: Analogs of the m-function in the theory of orthogonal polynomials on the unit circle. J. Comput. Appl. Math. 171, 411–424 (2004)
Simon, B.: Ratio asymptotics and weak asymptotic measures for orthogonal polynomials on the real line. J. Approx. Theory 126, 198–217 (2004)
Simon, B.: Orthogonal polynomials on the unit circle, part 1 and 2. Am. Math. Soc. Colloq. Publ. Ser. 54, 1–2 (2005)
Temme, N.M.: Remarks on Slater’s asymptotic expansions of Kummer functions for large values of the $$a$$-parameter. Adv. Dyn. Syst. Appl. 8, 365–377 (2013)
Volkmer, H.: The asymptotic expansion of Kummer functions for large values of the $$a$$-parameter, and remarks on a paper by Olver. SIGMA 12, 22 (2016)