WS2/Graphitic Carbon Nitride Heterojunction Nanosheets Decorated with CdS Quantum Dots for Photocatalytic Hydrogen Production

Wiley - Tập 11 Số 7 - Trang 1187-1197 - 2018
Yajun Zou1, Jian‐Wen Shi1,2, Dandan Ma1, Zhaoyang Fan1, Linhao Cheng1, Diankun Sun1, Zeyan Wang2, Chunming Niu1
1Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China

Tóm tắt

AbstractTwo‐dimensional/two‐dimensional (2D/2D) stacking heterostructures are highly desirable in fabricating efficient photocatalysts because face‐to‐face contact can provide a maximized interfacial region between the two semiconductors; this largely facilitates the migration of charge carriers. Herein, a WS2/graphitic carbon nitride (CN) 2D/2D nanosheet heterostructure decorated with CdS quantum dots (QDs) has been designed, for the first time. Optimized CdS/WS2/CN without another cocatalyst exhibits a significantly enhanced photocatalytic H2 evolution rate of 1174.5 μmol h−1 g−1 under visible‐light irradiation (λ>420 nm), which is nearly 67 times higher than that of the pure CN nanosheets. The improved photocatalytic activity can be primarily attributed to the highly efficient charge‐transfer pathways built among the three components, which effectively accelerate the separation and transfer of photogenerated electrons and holes, and thus, inhibit their recombination. Moreover, the extended light‐absorption range also contributes to excellent photocatalytic efficiency. In addition, the CdS/WS2/CN photocatalyst shows excellent stability and reusability without apparent decay in the photocatalytic H2 evolution within 4 cycles in 20 h. It is believed that this work may shed light on specifically designed 2D/2D nanosheet heterostructures for more efficient visible‐light‐driven photocatalysts.

Từ khóa


Tài liệu tham khảo

10.1039/C6NR00546B

10.1016/j.nantod.2013.12.002

10.1021/jz500546b

10.1002/adma.201500033

10.1039/C5EE01895A

10.1021/acs.chemrev.6b00075

10.1016/j.apsusc.2016.07.030

10.1039/C5TA07374J

10.1039/c3ta13188b

10.1039/C5TA05850C

10.1016/j.apsusc.2016.06.169

10.1016/S1872-2067(16)62554-8

10.1016/S1872-2067(17)62911-5

10.1021/acssuschemeng.7b03169

10.1016/j.apcatb.2017.03.019

10.1016/j.apcatb.2017.09.063

10.1016/j.apcatb.2017.06.027

10.1016/j.apcata.2015.10.037

10.1016/j.physe.2014.12.029

10.1016/j.apsusc.2015.08.250

10.1016/j.apcatb.2016.06.065

10.1021/nn305275h

10.1002/cssc.201601799

10.1002/cssc.201501702

10.1039/C6RA23137C

10.1016/j.jcis.2016.12.056

10.1021/jp3041692

10.1021/ja056494n

10.1021/jp810727n

10.1016/j.ijhydene.2012.10.116

10.1039/c3ta12856c

10.1039/c4cp00133h

10.1016/j.apcatb.2014.03.002

10.1002/adfm.201503221

10.1002/adma.201204453

10.1016/j.carbon.2013.10.083

10.1016/j.carbon.2015.12.008

10.1002/anie.201209017

10.1002/ange.201209017

10.1021/jp2006777

10.1021/ja506261t

10.1016/j.jcat.2017.04.016

10.1016/j.nanoen.2017.06.047

10.1016/j.apcatb.2015.05.060

10.1002/anie.201410172

10.1002/ange.201410172

10.1021/acs.jpcc.7b08702

10.1007/s10853-017-1419-5

10.1021/acsami.7b08407