Đánh giá tính dễ tổn thương liên quan đến tác động của việc khai thác nước ngầm trong tương lai đối với nguồn nước ngầm ven biển ở vùng đông bắc đảo Jeju, Hàn Quốc

Springer Science and Business Media LLC - Tập 79 Số 22 - 2020
Sun Woo Chang1, Il-Moon Chung1, Min Kim1, Bisrat Ayalew Yifru1
1Department of Land, Water and Environmental Research, Korea Institute of Civil Engineering and Building Technology, Goyang, 10223, Republic of Korea

Tóm tắt

Tóm tắt

Đảo Jeju là đảo lớn nhất ở Hàn Quốc. Gần đây, việc khai thác nước ngầm quy mô lớn đã được ghi nhận từ tầng nước nông ở khu vực đông bắc của đảo. Nghiên cứu này đã mô phỏng nguồn tài nguyên nước ngọt của tầng nước để ước lượng tính bền vững của việc sử dụng nước ngầm trên đảo Jeju về mức độ dễ tổn thương trước hiện tượng nước biển xâm nhập. Các mô hình nước ngầm số liệu ba chiều dùng phương pháp sai phân hữu hạn đã được mô phỏng bằng mã SEAWAT thuộc họ MODFLOW. Dữ liệu chính xác và gần đây về mực nước ngầm và độ mặn ở nhiều độ sâu thu được từ khu vực nghiên cứu đã được sử dụng để hiệu chỉnh mô hình; các kết quả mô phỏng cho thấy sự tương đồng tốt với dữ liệu quan sát. SEAWAT đã được sử dụng để xác định ranh giới hiện tại giữa nước biển và nước ngọt nhằm ước lượng định lượng tài nguyên nước ngầm tươi ven biển. Các kịch bản áp lực trong tương lai cũng đã được mô phỏng để đáp ứng với việc tăng cường bơm nước và các thay đổi khác nhau trong việc bổ sung nước. Các kết quả cho thấy việc sử dụng nước ngầm hiện tại trong tầng nước ven biển không gây ra hiện tượng xâm nhập nước biển, nhưng xâm nhập nước biển sẽ xảy ra nếu mùa khô tiếp tục trong vòng mười năm tới. Đánh giá tính dễ tổn thương dựa trên các mức nước ngầm dự đoán và nồng độ ion sử dụng mô phỏng số cho thấy sự dễ tổn thương trong tương lai ở tầng nước; do đó, việc đánh giá và hình dung liên tục về tính bền vững của tầng nước là rất quan trọng. Các dự đoán trong tương lai qua mô phỏng SEAWAT tích hợp và đánh giá GALDIT cho thấy sự gia tăng trong việc bơm nước ngầm có thể làm gia tăng tình trạng dễ tổn thương của nguồn nước ngầm ven biển từ mức độ vừa phải lên cao ở một số khu vực trong khu vực nghiên cứu, do gây ra hiện tượng xâm nhập nước biển bên cạnh trong các khu vực sâu hơn của tầng nước không được giới hạn.

Từ khóa


Tài liệu tham khảo

Arnold JG, Williams JR, Srinivasan R, King KW (1996) The soil and water assessment tool (SWAT) user’s manual. Temple, TX

Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model—case study in Goa. Jalvigyan Sameeksha 20:29–45

Chang SW, Clement TP, Simpson MJ, Lee K-K (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34(10):1283–1291. https://doi.org/10.1016/j.advwatres.2011.06.006

Chang SW, Nemec K, Kalin L, Clement TP (2016) Impacts of climate change and urbanization on groundwater resources in a barrier island. J Environ Eng 142(12):12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001123

Chang SW, Chung I, Kim M, Tolera M, Koh G (2019) Application of GALDIT in assessing the seawater intrusion vulnerability of Jeju Island, South Korea. Water 11(9):1824. https://doi.org/10.3390/w11091824

El-Kadi AI, Tillery S, Whittier RB, Hagedorn B, Mair A, Ha K, Koh G-W (2014) Assessing sustainability of groundwater resources on Jeju Island, South Korea, under climate change, drought, and increased usage. Hydrogeol J 22(3):625–642. https://doi.org/10.1007/s10040-013-1084-y

Feseker T (2007) Numerical studies on saltwater intrusion in a coastal aquifer in northwestern Germany. Hydrogeol J 15(2):267–279. https://doi.org/10.1007/s10040-006-0151-z

Guo W, Langevin CD (2002) User’s Guide to SEWAT: A computer program for simulation of three-dimensional variable-density groundwater flow. United States Geological Survey, Reston

Ghyben BW (1888) Nota in Verband met de Voorgenomen Putboring Nabij Amsterdam, Amsterdam, Tijdschr. Kon, 9, Institute Ing, pp. 8–22

Gingerich SB, Voss CI (2005) Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeol J 13(2):436–450. https://doi.org/10.1007/s10040-004-0371-z

Hahn J, Lee Y, Kim N, Hahn C, Lee S (1997) The groundwater resources and sustainable yield of Cheju volcanic island, Korea. Environ Geol 33(1):43–53. https://doi.org/10.1007/s002540050223

Herzberg A (1901) Die Wasserversorgung einiger Nordseebäder. J Gasbeleucht Wasserversorg 44(815–819):842–844

Houben G, Post VEA (2017) The first field-based descriptions of pumping-induced saltwater intrusion and upconing. Hydrogeol J 25(1):243–247. https://doi.org/10.1007/s10040-016-1476-x

Jeju Special Self-governing Province (2013) Comprehensive water resources development plan of Jeju Province. Jeju Province, Jeju, Korea (in Korean)

Kardan Moghaddam H, Jafari F, Javadi S (2016) Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrol Sci J 62:1–10. https://doi.org/10.1080/02626667.2015.1080827

KICT (2015) Development of the integrated surface-groundwater hydrologic analysis technique in Jeju Island, Infrastructure R&D report, Report no. R&D-14CARI-B056997-05, Korea. Korean.

Kim K, Shim B, Park K, Kim T, Seong H, Park Y et al (2005) Analysis of hydraulic gradient at coastal aquifers in eastern part of Jeju Island. Econ Environ Geol 38(1):79–89

Kim NW, Chung IM, Won YS, Arnold JG (2008) Development and application of the integrated SWAT-MODFLOW model. J Hydrol 356(1–2):1–16. https://doi.org/10.1016/j.jhydrol.2008.02.024

Kim NW, Chung IM, Yoo S, Lee J, Yang SK (2009) Integrated surface-groundwater analysis in Jeju Island. J Environ Sci 18:1017–1026

Koh GW (1997) Characteristics of the groundwater and hydrogeologic implications of the Seoguipo Formation in Cheju Island [PhD Thesis]. Busan, South Korea: Pusan National University p. 325 (in Korean with English abstract)

Koh GW, Park JB, Moon DC (2017) Geology and groundwater occurrence of volcanic island, Jeju (in Korean). JPDC, Jeju

Koh C-S, Yoon S-H, Hong J-G, Jeong J-O, Kim J-J (2019) Stratigraphic analysis of the drilling core in Woljong-ri coastal area, Jeju Island. J Geol Soc Korea 55(1):1–20. https://doi.org/10.14770/jgsk.2019.55.1.1(in Korean with English abstract)

Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ, Tanko AI, Zaudi MA (2015) Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods. Environ Sci Pollut Res Int 22(2):1512–1533. https://doi.org/10.1007/s11356-014-3444-0

Lobo-Ferreira JP, Chachadi AG (2005) Assessing aquifer vulnerability to seawater intrusion using Galdit method. Part 2 GALDIT indicators description. In: Proceedings of the 4th interceltic colloquium on hydrology and management of water. Water in Celtic Countries: Quantity, quality, and climate variablity, Guimaraes, Portugal, 11–13 July 2005

Luoma S, Okkonen J, Korkka-Niemi K (2016) Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeol J 25(1):203–222. https://doi.org/10.1007/s10040-016-1471-2

Masterson JP, Garabedian SP (2007) Effects of sea-level rise on ground water flow in a coastal aquifer system. Ground Water 45(2):209–217. https://doi.org/10.1111/j.1745-6584.2006.00279.x

Oki DS, Souza WR, Bolke EL, Bauer GR (1998) Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA. Hydrogeol J 6(2):243–263. https://doi.org/10.1007/s100400050149

Oki DS (2005) Numerical simulation of the effects of low-permeability valley-fill barriers and the redistribution of groundwater withdrawals in the Pearl Harbor area, Oahu, Hawaii, USGS Scientific Investigations Report 2005–5253 p. 112

Oude Essink GHP, van Baaren ES, de Louw PGB (2010) W00F04. Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour Res. https://doi.org/10.1029/2009WR008719

Praveena SM, Aris AZ (2010) Groundwater resources assessment using numerical model: a case study in low-lying coastal area. Int J Environ Sci Technol 7(1):135–146. https://doi.org/10.1007/BF03326125

Pedreira R, Kallioras A, Pliakas F, Gkiougkis I, Schuth C (2015) Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta, Greece. Environ Earth Sci 73(10):6387–6415. https://doi.org/10.1007/s12665-014-3864-7

Praveena SM, Abdullah MH, Aris AZ, Bidin K (2010) Recharge and aquifer response: Manukan Island’s Aquifer, Sabah, Malaysia. Environ Asia 3:72–81

Polemio M (2016) Monitoring and management of karstic coastal groundwater in a changing environment (Southern Italy): a review of a regional experience. Water 8(4):148. https://doi.org/10.3390/w8040148

Ranjan P, Kazama S, Sawamoto M (2006) Effects of climate change on coastal fresh groundwater resources. Glob Environ Change 16(4):388–399. https://doi.org/10.1016/j.gloenvcha.2006.03.006

Recinos N, Kallioras A, Pliakas F, Schuth C (2015) Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ Earth Sci 73(3):1017–1032. https://doi.org/10.1007/s12665-014-3452-x

Rozell DJ, Wong TF (2010) Effects of climate change on groundwater resources at Shelter Island, New York State, USA. Hydrogeol J 18(7):1657–1665. https://doi.org/10.1007/s10040-010-0615-z

Saidi S, Bouri S, Hassine S, Ben Dhia H (2014) Comparison of three applied methods of groundwater vulnerability mapping: Application to the coastal aquifer of Chebba-Mellouleche (Tunisia). Desalin Water Treat 52(10–12):2120–2130. https://doi.org/10.1080/19443994.2013.855663

Shao Q, Fahs M, Hoteit H, Carrera J, Ackerer P, Younes AA (2018) A 3-D semianalytical solution for density-driven flow in porous media. Water Resour Res. https://doi.org/10.1029/2018WR023583

Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Process 13(8):1277–1287. https://doi.org/10.1002/(SICI)1099-1085(19990615)13:8%3c1277::AID-HYP765%3e3.0.CO;2-W

Sulzbacher H, Wiederhold H, Siemon B, Grinat M, Igel J, Burschil T et al (2012) Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods. Hydrol Earth Syst Sci 16(10):3621–3643. https://doi.org/10.5194/hess-16-3621-2012

Trabelsi N, Triki I, Hentati I, Zairi M (2016) Aquifer vulnerability and seawater intrusion risk using GALDIT, GQISWI and GIS: case of a coastal aquifer in Tunisia. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5459-y

Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of sea water intrusion. Ground Water 50(1):48–58. https://doi.org/10.1111/j.1745-6584.2011.00817.x

Won JH, Kim JW, Koh GW, Lee JY (2005) Evaluation of hydrogeological characteristics in Jeju Island, Korea. Geosci J 9(1):33–46. https://doi.org/10.1007/BF02910552

Yoon S, Hyun WH, Jung CY (2005) Geology of Hallasan (Mt. Halla), Jeju Island. J Geol Soc Korea 41:481–497 (Korean)

Youn J, Kim G, Jung CY (2003) A hydrogeological study on high saline groundwater of handong-ri in the eastern part of Jeju island, Korea. J Geol Soc Korea 39(1):115–131 (in Korean with English abstract)

Younes A, Fahs M (2014) A semi-analytical solution for saltwater intrusion with very narrow transition zone. Hydrogeol J 22(2):501–506. https://doi.org/10.1007/s10040-014-1102-8

Yu W, Voss C, Michael H, Ahmed KM, Feinson L, Khan MR, Tuinhof A (2010) Implications of climate change for fresh groundwater resources in coastal aquifers in Bangladesh p. 121. World Bank and United States Geological Survey