VuWRKY, một gen WRKY nhóm I từ Vaccinium uliginosum, mang lại khả năng chịu đựng các stress lạnh và muối ở thực vật

Plant Cell, Tissue and Organ Culture - Tập 147 - Trang 157-168 - 2021
Zhiguo Dai1, Mingyue Wei1, Bingxiu Zhang1, Yue Yuan1, Bingfang Zhang2
1Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Northeast Region (Ministry of Agriculture), College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
2College of Arts and Sciences, Northeast Agricultural University, Harbin, China

Tóm tắt

Các thành viên của yếu tố phiên mã WRKY tham gia vào phản ứng của cây đối với stress. Vaccinium uliginosum phân bố ở dãy núi Greater Khingan và Lesser Khingan có khả năng kháng lạnh cao. Trong nghiên cứu này, một gen WRKY được gọi là VuWRKY đã được xác định từ V. uliginosum, và mẫu hình biểu hiện cũng đã được phân tích. Vai trò của VuWRKY trong khả năng chịu đựng stress abiotic được nghiên cứu thông qua việc quá biểu hiện trong Arabidopsis thaliana. Kết quả cho thấy VuWRKY chứa một khung đọc mở dài 1632 bp, bao gồm hai miền WRKY và hai cấu trúc ngón kẽm C2H2. Do đó, VuWRKY thuộc nhóm I của WRKY. Phân tích qPCR cho thấy VuWRKY có biểu hiện cao nhất ở lá. Dưới tác động của stress muối và nhiệt độ thấp, sự biểu hiện của VuWRKY ở V. uliginosum trước tiên tăng lên và sau đó giảm theo thời gian. Việc chuyển đổi VuWRKY vào A. thaliana dẫn đến sự gia tăng hoạt động của các enzyme kháng oxy hóa (SOD, POD và CAT), hàm lượng proline và chlorophyll cao hơn, trong khi hàm lượng malondialdehyde (MDA) thấp hơn. Tỷ lệ sống sót của cây giống biểu hiện quá mức VuWRKY được cải thiện đáng kể. Kết quả của chúng tôi chỉ ra rằng VuWRKY đóng một vai trò tích cực trong việc chịu đựng các stress lạnh và muối. VuWRKY được tách chiết từ Vaccinium uliginosum có phản ứng với stress lạnh và muối và đóng vai trò tích cực trong khả năng kháng chịu stress abiotic của Arabidopsis thaliana.

Từ khóa

#WRKY #Vaccinium uliginosum #khả năng chịu đựng #stress abiotic #Arabidopsis thaliana #biểu hiện gen

Tài liệu tham khảo

Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World. https://doi.org/10.1155/2015/807560 Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16. https://doi.org/10.1155/2015/80756010.1007/s00709-015-0920-4 Chen F, Hu Y, Vannozzi A, Wu K, Zhang L (2018) The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci 36:1–25. https://doi.org/10.1080/07352689.2018.1441103 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x Deguo H, Zhaoyuan Z, Haibin D, Lijing C, Wei L, Hongxia L, Guohui Y (2018) Isolation and characterization of MbWRKY2 gene involved in enhanced drought tolerance in transgenic tobacco. J Plant Interact 13(1):163–172. https://doi.org/10.1080/17429145.2018.1447698 Die JV, Rowland LJ (2014) Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environ Exp Bot 106:87–98. https://doi.org/10.1016/j.envexpbot.2013.12.017 Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37 Eulgem T, Rushton P, Robatzek S, Somssich I (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206. https://doi.org/10.1016/S1360-1385(00)01600-9 Giannopolitis CN, Ries SK (1977) Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59(2):315–318. https://doi.org/10.1104/pp.59.2.315 Gong XQ, Hu JB, Liu JH (2014) Cloning and characterization of FcWRKY40, a WRKY transcription factor from Fortunella crassifolia linked to oxidative stress tolerance. Plant Cell Tissue Organ Cult 119:197–210. https://doi.org/10.1007/s11240-014-0526-0 Gou T, Han J, Yang R, Wu L, Yao X (2015) Progress of studies on freezing injury of blueberry. J Jilin Agric Sci 40:101–103, 107. https://doi.org/10.16423/j.cnki.1003-8701.2015.06.027 Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X (2018a) The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Front Plant Sci 9:545. https://doi.org/10.3389/fpls.2018.00545 Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X (2018b) The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Front Plant Sci 25:1–16. https://doi.org/10.3389/fpls.2018.00545 Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611. https://doi.org/10.1007/s004250050524 Istek N, Gurbuz O (2017) Investigation of the impact of blueberries on metabolic factors influencing health. J Funct Foods 38:298–307. https://doi.org/10.1016/j.jff.2017.09.039 Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, Wang Y (2010) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232:1325–1337. https://doi.org/10.1007/s00425-010-1258-y Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔ CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/s1360-1385(02)02312-9 Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760. https://doi.org/10.3389/fpls.2016.00760 Qiu Y, Yu D (2008) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47. https://doi.org/10.1016/j.envexpbot.2008.07.002 Sun JT, Hu W, Zhou R, Wang LZ, Wang XT, Wang Q, Feng ZY, Li YP, Qiu D, He GY, Yang GX (2015) The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34:23–35. https://doi.org/10.1007/s00299-014-1684-6 Toka I, Planchai S, Cabassa C, Justin AM, Vos DD, Richard L, Savoure A, Carol P (2010) Mutations in the hyperosmotic stress-responsive mitochondrial basic amino acid carrier2 enhance proline accumulation in Arabidopsis. Plant Physiol 152:1851–1862. https://doi.org/10.1104/pp.109.152371 Tu MX, Wang XH, Huang L, Guo RR, Zhang HJ, Cai JS, Wang XP (2016) Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses. Plant Cell Tissue Org Cult 125:537–551. https://doi.org/10.1007/s11240-016-0969-62.10 Wang X, Du B, Liu M, Sun N, Qi X (2013) Arabidopsis transcription factor WRKY33 is involved in drought by directly regulating the expression of CesA8. Am J Plant Sci 4:21–27. https://doi.org/10.4236/ajps.2013.46A004 Wei W, Zhang Y, Han L, Han L, Guan Z, Chai T (2008) A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27:795–803. https://doi.org/10.1007/s00299-007-0499-0 Yang FS, Nie S, Liu H, Shi TL, Tian XC, Zhou SS, Bao YT, Jia KH, Guo JF, Zhao W, An N, Zhang RG, Yun QZ, Wang XZ, Mannapperuma C, Porth I, Yousry AE, Street NR, Wang XR, Peer YV, Mao JF (2020) Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun 11:5269. https://doi.org/10.1038/s41467-020-18771-4 Yao W, Wang S, Zhou B, Jiang T (2016) Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiol 36:896–908. https://doi.org/10.1093/treephys/tpw004 Yilmaz Y, Erdinc C, Akkopru A, Kipcak S (2020) Use of plant growth promoting rhizobacteria against salt stress for tomato (Solanum lycopersicum L.) seedling growth. Acta Sci Pol Hortorum Cultus 19(6):15–29. https://doi.org/10.24326/asphc.2020.6.2 Yongmei C, Zhen Z, Dan Z, Jie H, Lixia H, Xin L (2019) VvWRKY13 from Vitis vinifera negatively modulates salinity tolerance. Plant Cell Tissue Organ Cult 139:455–465. https://doi.org/10.1007/s11240-019-01620-8 Zang JL, Li YD, Liu QZ, Zong XJ, Wang JW (2011) Cloning and sequence analysis of CBF gene in blueberry (Vaccinium uliginosum L.). J Jilin Agric Univ 33:532–535. https://doi.org/10.13327/j.jjlau.2011.05.019 Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12. https://doi.org/10.1186/1471-2148-5-1 Zhu G, Deng X, Zuo W (1983) Determination of free proline in plants. Plant Physiol Commun 1:35–37 Zhu J (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029