Vranceanu surface in % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39ga % iyaacqWFecFrdaahaaWcbeqaaGqaaiab+rda0aaaaaa!47D0! $$ \mathbb{E}^4 $$ with pointwise 1- type Gauss map
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces Glasgow Math. J., 34 (1992), 355–359.
C. Baikoussis, B. Y. Chen, and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math., 16 (1993), 341–349.
C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II, 16 (1993), 31–42.
B.-Y. Chen, Geometry of Submanifolds and its Applications, Science University of Tokyo(1981).
B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore (1984).
B.-Y. Chen, Finite Type Submanifolds and Generalizations, Universita degli Studi di Roma La Sapienza, Istituto Matematico Guido Castelnuovo, Rome(1985).
B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (2005), 447–455.
B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161–186.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38 (2001), 753–761.
Y. H. Kim and D.W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), 85–96.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), 191–205.
Y. H. Kim and D.W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math., 35 (2005), 1555–1581.
A. Mihai, An inequality for totally real surfaces in complex space forms, Kragujevac J. Math., 26 (2004), 83–88.
I. Mihai, B. Rouxel, Tensor product surfaces of Euclidean plane curves, Results Math., 27 (1995), 308–315.
G. Vranceanu, Surfaces de Rotation dans E4, Rev. Roumaine Math. Pures Appl., 22 (1977), 857–862.
D.W. Yoon, Rotation Surfaces with finite type Gauss map in E4, Indian J. pura appl.Math. 32 (2001), 1803–1808.
D.W. Yoon, Some properties of the Clifford torus as rotation surface, Indian J. pura appl.Math., 34 (2003), 907–915.