Voxel-based simulation approach for molecular communications via diffusion
Tài liệu tham khảo
Akyildiz, 2008, Nanonetworks: A new communication paradigm, Comput. Netw., 52, 2260, 10.1016/j.comnet.2008.04.001
Nakano, 2013
Farsad, 2016, A comprehensive survey of recent advancements in molecular communication, IEEE Commun. Surv. Tuts., 18, 1887, 10.1109/COMST.2016.2527741
Hauser, 1996
Cobo, 2010, Bacteria-based communication in nanonetworks, Nano Commun. Netw., 1, 244, 10.1016/j.nancom.2010.12.002
Abadal, 2011, Automata modeling of quorum sensing for nanocommunication networks, Nano Commun. Netw., 2, 74, 10.1016/j.nancom.2011.04.004
M.S. Kuran, H.B. Yilmaz, T. Tugcu, A tunnel-based approach for signal shaping in molecular communication in: Proc. IEEE Int. Conf. on Commun., ICC, 2013, pp. 776–781.
T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima, Molecular communication for nanomachines using intercellular calcium signaling in: Proc. IEEE Int. Conf. on Nanotechnol., NANO, 2005, pp. 478–481.
Kuran, 2012, Calcium signaling: Overview and research directions of a molecular communication paradigm, IEEE Wirel. Commun., 19, 10.1109/MWC.2012.6339468
Guo, 2015, Molecular versus electromagnetic wave propagation loss in macro-scale environments, IEEE Trans. Mol. Bio. Multi-Scale Commun., 1, 18, 10.1109/TMBMC.2015.2465517
Srinivas, 2012, Molecular communication in fluid media: The additive inverse gaussian noise channel, IEEE Trans. Inf. Theory, 58, 4678, 10.1109/TIT.2012.2193554
Yilmaz, 2014, Three-dimensional channel characteristics for molecular communications with an absorbing receiver, IEEE Commun. Lett., 18, 929, 10.1109/LCOMM.2014.2320917
Akkaya, 2015, Effect of receptor density and size on signal reception in molecular communication via diffusion with an absorbing receiver, IEEE Commun. Lett., 19, 155, 10.1109/LCOMM.2014.2375214
Pierobon, 2010, A physical end-to-end model for molecular communication in nanonetworks, IEEE J. Sel. Areas Commun., 28, 10.1109/JSAC.2010.100509
Kilinc, 2013, Receiver design for molecular communication, IEEE J. Sel. Areas Commun., 31, 705, 10.1109/JSAC.2013.SUP2.1213003
Noel, 2016
Llatser, 2014, N3Sim: Simulation framework for diffusion-based molecular communication nanonetworks, Simul. Model. Pract. Theory, 42, 210, 10.1016/j.simpat.2013.11.004
Felicetti, 2012, A simulation tool for nanoscale biological networks, Nano Commun. Netw., 3, 2, 10.1016/j.nancom.2011.09.002
Yilmaz, 2014, Simulation study of molecular communication systems with an absorbing receiver: Modulation and ISI mitigation techniques, Simul. Model. Pract. Theory, 49, 136, 10.1016/j.simpat.2014.09.002
Noel, 2017, Simulating with accord: Actor-based communication via reaction–diffusion, Nano Commun. Netw., 11, 44, 10.1016/j.nancom.2017.02.002
Chopard, 1994, Multiparticle lattice gas automata for reaction diffusion systems, Internat. J. Modern Phys. C, 5, 47, 10.1142/S0129183194000052
Chopard, 2002, Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems, Adv. Complex Syst., 5, 103, 10.1142/S0219525902000602
Vidal Rodriguez, 2009
Burrage, 2011, Stochastic simulation for spatial modelling of dynamic processes in a living cell, 43
Gillespie, 1976, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403, 10.1016/0021-9991(76)90041-3
Gillespie, 1977, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340, 10.1021/j100540a008
Gul, 2010, Nanons: A nanoscale network simulator framework for molecular communications, Nano Commun. Netw., 1, 138, 10.1016/j.nancom.2010.08.003
H.B. Yilmaz, I. Demirkol, Voxel-based solver for diffusion-based molecular communications in: Int. Workshop on Molecular Commun., MOLCOM, 2018, pp. 1–2.
M.S. Kuran, H.B. Yilmaz, T. Tugcu, I.F. Akyildiz, Modulation Techniques for Communication via Diffusion in Nanonetworks in: Proc. IEEE Int. Conf. on Commun., ICC, 2011, pp. 1–5.