Vortices in a stochastic parabolic Ginzburg-Landau equation
Tóm tắt
We consider the variant of a stochastic parabolic Ginzburg-Landau equation that allows for the formation of point defects of the solution. The noise in the equation is multiplicative of the gradient type. We show that the family of the Jacobians associated to the solution is tight on a suitable space of measures. Our main result is the characterization of the limit points of this family. They are concentrated on finite sums of delta measures with integer weights. The point defects of the solution coincide with the points at which the delta measures are centered.
Tài liệu tham khảo
Abrikosov, A.: On the magnetic properties of superconductors of the second type. ZhETP 32, 1442 (1957). [in Russian]
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Alouges, F., Soyeur, A.: On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)
Barbu, V., Brzeźniak, Z., Hausenblas, E., Tubaro, L.: Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise. Stoch. Process. Appl. 123(3), 934–951 (2013)
Barton-Smith, M.: Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise. Stoch. Anal. Appl. 22(1), 1–18 (2004)
Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston, MA (1994)
Bethuel, F., Orlandi, G., Smets, D.: Motion of concentration sets in Ginzburg-Landau equations. Ann. de la Faculté des sci. de Toulouse 13(1), 3–43 (2004)
Billingsley, P.: Convergence of probability measures, second edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
Brzeźniak, Z., Capiński, M., Flandoli, F.: A convergence result for stochastic partial differential equations. Stochastics 24(4), 423–445 (1988)
Brzeźniak, Z., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation. J. Differ. Equ. 245(1), 30–58 (2008)
Chugreeva, O.: Motion of the Ginzburg-Landau vortices for the mixed flow with convective forcing. Preprint at http://www.math1.rwth-aachen.de/de/forschung/preprints
Chugreeva, O.: Stochastics meets applied analysis: stochastic Ginzburg-Landau vortices and stochastic Landau-Lifshitz-Gilbert equation. PhD Thesis at RWTH Aachen (2016), under review
Colliander, J.E., Jerrard, R.L.: Vortex dynamics for the Ginzburg-Landau-Schrödinger equation. Int. Math. Res. Notices 7, 333–358 (1998)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, vol. 152. Cambridge University Press, Cambridge (2014)
Deang, J., Du, Q., Gunzburger, M.D.: Stochastic dynamics of Ginzburg-Landau vortices in superconductors. Phys. Rev. B 64(5), 052,506 (2001)
Deang, J., Du, Q., Gunzburger, M.D.: Modeling and computation of random thermal fluctuations and material defects in the Ginzburg-Landau model for superconductivity. J. Comput. Phys. 181(1), 45–67 (2002)
Da Prato, G., Tubaro, L.: Some results on semilinear stochastic differential equations in Hilbert spaces. Stochastics 15(4), 271–281 (1985)
Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. B (N.S.) 13(2), 99–125 (1977)
E, W.: Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Physica D 77(4), 383–404 (1994)
Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)
Filipović, D., Tappe, S., Teichmann, J.: Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics 82(5), 475–520 (2010)
Flandoli, F.: Stochastic flows for nonlinear second-order parabolic SPDE. Ann. Prob. 24(2), 547–558 (1996)
Flandoli, F., Lisei, H.: Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications. Stoch. Anal. Appl. 22(6), 1385–1420 (2004)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)
Ginzburg, V., Landau, L.: On the theory of superconductivity. ZhETP 20, 1064 (1950). [in Russian]
Jerrard, R.L., Soner, H.M.: Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142(2), 99–125 (1998)
Jerrard, R.L., Soner, H.M.: The Jacobian and the Ginzburg-Landau energy. Calc. Var. Partial Differ. Equ. 14(2), 151–191 (2002)
Jerrard, R.L., Spirn, D.: Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics. Arch. Ration. Mech. Anal. 190(3), 425–475 (2008)
Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)
Kuksin, S., Shirikyan, A.: Randomly forced CGL equation: stationary measures and the inviscid limit. J. Phys. A 37(12), 3805 (2004)
Kunita, H.: Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge University Press, Cambridge (1990)
Kurzke, M., Melcher, C., Moser, R., Spirn, D.: Dynamics for Ginzburg-Landau vortices under a mixed flow. Indiana Univ. Math. J. 58(6), 2597–2621 (2009)
Ladyzhenskaya, O.A., Solonnikov, V., Uraltseva, N.N.: Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Izdat. Nauka, Moscow (1973). In Russian
Lin, F.H.: Some dynamical properties of Ginzburg-Landau vortices. Commun. Pure Appl. Math. 49(4), 323–359 (1996)
Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96. Springer Science & Business Media, New York (1994)
Miot, E.: Dynamics of vortices for the complex Ginzburg-Landau equation. Anal. PDE 2(2), 159–186 (2009)
Neu, J.C.: Vortices in complex scalar fields. Physica D 43(2–3), 385–406 (1990)
Röger, M., Weber, H.: Tightness for a stochastic Allen-Cahn equation. Stoch. Partial Differ. Equ. 1(1), 175–203 (2013)
Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998)
Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)
Sandier, E., Serfaty, S.: A product-estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211(1), 219–244 (2004)
Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser Boston Inc., Boston, MA (2007)
Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Prob. 6(1), 19–41 (1978)
Vakhania, N., Tarieladze, V., Chobanyan, S.: Probability Distributions on Banach Spaces, vol. 14. Springer Science & Business Media, Dordrecht (1987)
Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems. Springer, New York (1986)