Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Động lực học vortex và sự nhúng khối lượng trong các tia khuếch tán có rãnh xoáy ở trạng thái bất kỳ và có góc lệch rãnh
Tóm tắt
Việc điều khiển thụ động các dòng tia nhằm cải thiện sự khuấy trộn và sự nhúng là một chủ đề thu hút sự quan tâm ứng dụng rộng rãi. Mục tiêu của chúng tôi là phát triển các thiết bị phân phối không khí mới cho hệ thống HVAC, bằng cách sử dụng các vòi phun hình dạng rãnh xoáy, nhằm cải thiện cảm giác thoải mái nhiệt cho người sử dụng. Hai dòng không khí xoáy 6 rãnh có và không có góc lệch rãnh đã được nghiên cứu thực nghiệm và so sánh với một dòng tròn tham chiếu có số Reynolds ban đầu tương tự. Mục tiêu chính là phân tích các biến đổi xảy ra trong động lực học xoáy của dòng chảy, trước tiên bằng cách thay thế một ống tròn bằng một ống rãnh thẳng, và thứ hai bằng một ống rãnh có độ nghiêng kép của các rãnh. Các hình ảnh trực quan nhanh về dòng chảy và các phép đo bằng chỉ nóng về phổ vận tốc theo hướng dòng cho phép hiểu được cơ chế cuốn xoáy. Không giống như dòng tròn, nơi mà các vòng chính là liên tục, các xoáy Kelvin–Helmholtz trong các dòng tia rãnh được phát hiện là không liên tục. Các “đoạn vòng” tạo ra tách ra ở các tần số khác nhau tùy thuộc vào việc chúng được xả ra ở các khe rãnh hay ở các bên của rãnh. Một lý do cho hiện tượng này dựa trên sự biến đổi mạnh mẽ của độ cong mặt thoát. Thêm vào đó, một kịch bản suy đoán về động lực học xoáy được các tác giả đề xuất. Tính chất không liên tục của các xoáy K–H cho phép phát triển các cấu trúc theo hướng dòng thứ cấp, không bị ảnh hưởng bởi sự đi qua của các cấu trúc chính như trong trường hợp của dòng tròn. Do đó, vai trò vận chuyển xung lượng của các cấu trúc theo hướng dòng trở nên hiệu quả hơn và dẫn đến sự gia tăng đáng kể trong tỷ lệ nhúng trong vùng ban đầu. Khối lượng chất lỏng được nhúng trong tia khuếch tán có rãnh bởi các cấu trúc theo hướng dòng bị khuếch đại đáng kể bởi độ nghiêng kép của ranh giới thoát vòi phun.
Từ khóa
#động lực học vortex #dòng tia #khuếch tán không khí #hệ thống HVAC #cuốn xoáy Kelvin–HelmholtzTài liệu tham khảo
Abdel-Rahman AA, Chakroun W, Al-Fahed SF (1997) LDA measurements in the turbulent round jet. Mech Res Commun 24(3)
Adrian RJ (1983) Laser velocimetry. In: Goldstein RJ (ed) Fluid mechanics measurements. Hemisphere Publishing, Washington, DC., pp 155–240
ASHRAE (2001) ASHRAE handbook. Fundamentals (Chap 32). Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineering
Barnett DO, Bentley HT (1974) Statistical bias of individual realization laser velocimeters. In: Proceedings of the second international workshop on laser velocimetry
Belovich VM, Samimy M (1997) Mixing processes in a coaxial geometry with a central lobed mixer-nozzle. AIAA J 35(5)
Bendat JS, Piersol AG (1986) Random data. Analysis and measurement procedures, 2nd edn. Wiley-Interscience, New York, p 566
Browand FK, Laufer J (1975) The role of large scale structures in the initial development of circular jets. In: Proceedings of 4th symposium on the turbulence in liquids, University of Missouri
Dimotakis PE (2000) The mixing transition in turbulents flows. J Fluid Mech 409:68–69
Dimotakis PE, Brown GL (1976) The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J Fluid Mech 78:535–560
Fanger PO et al (1988) Air turbulence and sensation of draught. Energy Build 12(1):21–39
Fiedler HE et al (1998) Three-dimensional mixing layers and their relatives. Exp Therm Fluid Sci 16:3–21
Garcia CM, Jackson PR, Garcia MH (2006) Confidence intervals in the determination of turbulence parameters. Exp Fluids 40(4):514–522
Greitzer EM, Tan CS, Graf MB (2004) Internal flow. Concepts and applications, ed. C.U. Press, 707
Gutmark EJ, Ho C-M (1984) Preferred modes and the spreading rates of jets. Phys Fluids 26(10):2932–2938
Haertig J (2003) Traitement de données en Vélocimétrie Laser Doppler. AFVL Ecole d’automne: Vélocimétrie et granulométrie laser. St-Pierre d’Oléron
Hasan MAZ, Hussain AKMF (1979) A formula for resonance frequencies of a whistler nozzle. J Acoust Soc Am 69:1140
Hasan MAZ, Hussain A (1982) The self-excited axisymmetric jet. J Fluid Mech 115:59
Hill WG, Greene PRI (1977) Increased turbulent jet mixing rates obtained by self-excited acoustic oscillation. Trans of ASME J Fluids Eng 99: 520
Ho CM, Gutmark E (1987) Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J Fluid Mech 179:383–405
Hu H et al (1999) Changes to the vortical and turbulent structure of jet flows due to mechanical tabs. Proc Inst Mech Eng 213(Part C):321–329
Hu H et al (2000a) Passive control on jet mixing flows by using vortex generators. In: Proceedings of the sixth triennial international symposium on fluid control, measurement and visualisation, Sherbrooke, Canada
Hu H et al (2000b) Particle image velocimetry and planar laser induced fluorescence measurements on lobed jet mixing flows. Exp Fluids (Suppl): S141–S157
Hu H et al (2000c) Research on the vortical and turbulent structures in the lobed jet flow using laser induced fluorescence and particle image velocimetry techniques. Meas Sci Technol 11:698–711
Hu H et al (2001) A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique. Phys Fluids 13(11):3425–3441
Hu H et al (2002) Mixing process in a lobed jet flow. AIAA J 40(7):1339–1345
Hu H et al (2004) Analysis of a turbulent jet mixing flow by using a PIV-PLIF combined system. J Vis 7(1):33–42
Husain HS, Hussain AKMF (1999) The elliptic whistler jet. J Fluid Mech 397:23–44
Hussain AKMF (1983) Coherent structures—reality and myth. Phys Fluids 31:2816–2850
Hussain AKMF (1986) Coherent structures and turbulence. J Fluid Mech 173:303–356
Hussain AKMF, Clark AR (1977) Upstream influence on the near field of turbulent plane jet. Phys Fluids 20(9):1416–1426
Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320
Hussain AKMF, Zaman KBMQ (1978a) The free shear layer tone phenomenon. J Fluid Mech 87(2):349–383
Hussain AKMF, Zaman KBMQ (1978b) The free shear layer tone phenomenon. J Fluid Mech 87(2):349–383
Hussain AKMF, Zaman KBMQ (1982) Report FM 14, U.o. Huston (ed), pp 349–383
Hussein HJ, Capp SP, George WK (1994) Velocity measurements in a high Reynolds number, momentum conserving, axisymmetric, turbulent jet. J Fluid Mech 258:31–75
Kähler C, Sammler B, Kompenhans J (2002) Generation and control of tracer particles for optical flow investigations in air. Exp Fluids 33(6):736–742
Kim NS (2005) Analyse expérimentale d’un jet turbulent impactant sur une plaque plane et sur un obstacle de section carrée. INP Toulouse
Krothapalli A, Baganoff D, Karamcheti K (1980) Development and structure of a rectangular jet in a multiple jet configuration. AIAA J 18(8):945–950
Krothapalli A, Baganoff D, Karamcheti K (1981) On the mixing of a rectangular jet. J Fluid Mech 107
Lai JCS (1992) Turbulence suppression in an elliptic jet. Int J Heat Fluid Flow 13(1)
Liepmann D (1991) Streamwise vorticity and entrainment in the near field of a round jet. Phys Fluids 3(5):1179–1185
Liepmann D, Gharib M (1992) The role of streamwise vorticity in the near field entrainment of round jets. J Fluid Mech 245:642–668
Lin YT et al (1998) Investigation on the mass entrainment of an acoustically controlled elliptic jet. Int Commun Heat Mass Transf 25(3)
Mao RH, Yu SC, Chua LP (2006) Kelvin–Helmholtz and streamwise vortices in the near wake of a single lobe forced mixer. Proc Inst Mech Eng 220:692–698
McCormick D, Bennett JCB Jr (1994) Vortical and turbulent structure of a lobed mixer free shear layer. AIAA J 32(9)
Meslem A, Nastase I, Abed-Meraim K (2007) Experimental investigation of a lobed jet flow mixing performance. J Eng Phys Thermophys 81(1)
Nastase I (2007) Analyse des jets lobés en vue de leur intégration dans les Unités Terminales de Diffusion d’air. Ph.D thesis, Université de La Rochelle
Nastase I, Meslem A (2007) Passive control of jet flows using lobed nozzle geometries. Mécanique Ind 8(2):101–109
Nastase I, Meslem A (2008) Vortex dynamics and entrainment mechanisms in low Reynolds orifice jets. J Vis 11(4)
Nastase I, Meslem A, Gervais P (2008) Primary and secondary vortical structures contribution in the entrainment of low Reynolds number jet flows. Exp Fluids 44(6):1027–1033
New TH, Tan KS, Tsai HM (2007) Effects of noncircular collars on an axisymmetric jet. Phys Fluids 19:84–104
Petrie HL, Samimy M, Addy AL (1988) Laser Doppler velocity biais in separated flows. Exp Fluids 6(1):80–88
Quinn WR (1992) Streamwise evolution of a square jet cross-section. AIAA J 30:2853–2857
Romano GP (2002) The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet. Exp Fluids 33:323–333
Sandberg M, Elvsén P-A (2004) Rapid time varying ventilation flow rates as a mean of increasing the ventilation efficiency. In: Proceedings of ROOM VENT conference. Coimbra, Portugal
Sfeir AA (1976) The velocity and temperature fields for rectangular jets. Int J Heat Mass Transf 19
Sfeir AA (1979) Investigation of three-dimensional turbulent rectangular jets. AIAA J 17(10)
Sforza PM (1969) A quasi-axisymmetric approximation for turbulent, three-dimensional jets and wakes. AIAA J 7(7)
Shih C, Krothapalli A, Gogineni S (1994) Experimental observations of instability modes in a rectangular jet. AIAA J 32(9):1852–1859
Taneda S (1978) Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J Fluid Mech 85:187–192
Trentacoste N, Sforza P (1967) Further experimental results for three-dimensional free jets. AIAA J 5(5)
Trentacoste N, Sforza P (1968) Some remarks on three-dimensional wakes and jets. AIAA J 6(12)
Wang XK, Chua LP, Yu SCM (2003) On the near field of a square jet with vortex generating tabs. Fluid Dyn Res 32:99–117
Winant CD, Brownant FK (1974) Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number. J Fluid Mech 68(2):255–287
Yuan Y (2000) Jet fluid mixing control through manipulation of inviscid flow structures. Ph.D thesis, Virginia Polytechnic Institute and State University
Zaman KBMQ (1996a) Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J Fluid Mech 316(1):1–27
Zaman KBMQ (1996b) Spreading characteristics and thrust of jets from asymmetric nozzles. AIAA Paper No. 96-0200
Zaman KBMQ (1999) Spreading characteristics of compressible jets from nozzles of various geometries. J Fluid Mech 383:197–228
Zaman KBMQ, Hussain AKMF (1980) Vortex pairing in a circular jet under controlled excitation. Part 1. General response. J Fluid Mech 101(3)
Zaman KBMQ, Reeder MF, Samimy M (1994) Control of axisymmetric jet using vortex generators. Phys Fluids 6(2):778–793
Zaman KBMQ, Wang FY, Georgiadis NJ (2003) Noise, turbulence and thrust of subsonic free jets from lobed nozzles. AIAA J 41(3)
