Voronoi diagrams—a survey of a fundamental geometric data structure

ACM Computing Surveys - Tập 23 Số 3 - Trang 345-405 - 1991
Franz Aurenhammer1
1Technische Univ. Graz, Schiebbstattgasse, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

AGARWAL P. K., 1990, Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 203

AGGARWAL A., 1987, Proceedings of the 3rd Annual ACM Symposium on Computational Geometry, 278

AGGARWAL A., 1990, Proceedings of the 22nd Annual ACM Symposium on STOC, 331

10.1007/BF02187749

AGGARWAL A., 1989, Proceedings of the 5th Annual ACM Symposium on Computational Geometry, 283

AGGARWAL A., 1988, Parallel computational geometry, Algorithmica, 3, 293, 10.1007/BF01762120

10.1109/TPAMI.1982.4767255

AKL S., 1983, A note on Euclidean matchings, triangulations, and spanning trees, J. Comb. Inf. Syst. Sci., 8, 169

ALEXANDERSON G. L., 1978, Simple partition of space, Math. Magazine, 51, 220, 10.1080/0025570X.1978.11976715

ALT H., 1990, Algorithmic aspects of motion planning: A tutorial (part 2), Algorithms Rev., 1, 61

AONUMA H., 1990, Proceedings of 6th Annual ACM Symposium on Computational Geometry., 225

ARNOLD D. B., 1984, The use of Voronoi tessellations in processing soil survey results, IEEE Comput. Graph. Appl., 4, 22, 10.1109/MCG.1984.276058

ARONOV B., 1989, On the geodesic Voronoi diagram of point sites in a simple polygon, Algorithmica, 4, 109, 10.1007/BF01553882

ARONOV B., 1988, Proceedings of the 4th Annual ACM Symposium on Computational Geometry., 229, 10.1145/73393.73417

ARONOV B., 1990, Proceedings of the 6th Annual ACM Symposium on Computational Geometry., 112

ASANO T., Perspectives in Computing 15, 51

ASANO T., 1988, Proceedings of the 4th Annual ACM Symposium on Computational Geometry, 252, 10.1145/73393.73419

ASH P. F., 1985, Recognizing Dirichlet tessellations, Geometriae Dedicata, 19, 175

ASH P. F., 1986, Generalized Dirichlet tessellations, Geometrme Dedicata, 20, 209, 10.1007/BF00164401

ASH P. F., 1988, Boston, 231

AUGENBAUM J. M., 1985, On the construction of the Voronoi mesh on a sphere, J. Comput. Phys., 59, 177, 10.1016/0021-9991(85)90140-8

10.1137/0216006

AURENHAMMER F., 1987, A criterion for the affine equivalence of cell complexes in R d and convex polyhedra in Rd+ 1, Discrete Comput. Geometry, 2, 49, 10.1007/BF02187870

10.1016/S0747-7171(87)80003-2

10.1016/0196-6774(88)90035-1

AURENHAMMER F., 1988, Linear combinations from power domains, Geometriae Dedicata, 28, 45, 10.1007/BF00147799

10.1007/BF02187788

10.1016/0166-218X(90)90108-O

AURENHAMMER F., 1984, An optimal algorithm for constructing the weighted Voronoi diagram in the plane, Pattern Recognition, 17, 251, 10.1016/0031-3203(84)90064-5

AURENHAMMER F., 1988, Geometric relations among Voronoi diagrams, Geometriae Dedicata, 27, 65, 10.1007/BF00181613

AURENHAMMER F., Proceedings of the 7th Annual ACM Symposium on Computational Geometry., 142

AURENHAMMER F. AND STOCKL G. 1988. On the peeper's Voronoi diagram. Rep. 264 IIG-TU Graz Austria. AURENHAMMER F. AND STOCKL G. 1988. On the peeper's Voronoi diagram. Rep. 264 IIG-TU Graz Austria.

AURENHAMMER F. ST(SCKL G. AND WELZL E. 1991. The post-office problem for fuzzy point sets. Rep. 91-07 FU Berlin Germany. AURENHAMMER F. ST(SCKL G. AND WELZL E. 1991. The post-office problem for fuzzy point sets. Rep. 91-07 FU Berlin Germany.

AVIS D., 1983, Algorithms for computing d-dimenslonal Voronoi diagrams and their duals, Adv. Comput. Res., 1, 159

BABENKO V. F., 1977, On the optimal cubature ormulae on certain classes of continuous functions, Analys~s Math., 3, 3, 10.1007/BF02333249

BADDELEY A., 1977, A fourth note on recent research in geometrical probability, Adv. Appl. Probab., 9, 824, 10.2307/1426702

10.1145/42282.214094

BENTLEY J. L., 1979, A note on Euclidean near neighboring searching in the plane, Inf. Process. Lett., 8, 133

10.1145/355921.355927

BERN M. W. EPPSTEIN D. AND GILBERT J. 1990. Provably good mesh generation. Manuscript XEROX Palo Alto Research Center Palo Alto Calif. BERN M. W. EPPSTEIN D. AND GILBERT J. 1990. Provably good mesh generation. Manuscript XEROX Palo Alto Research Center Palo Alto Calif.

BESAG J., 1974, Spatial interaction and the statistical analysis of lattice systems, J. Roy. Statist. Soc. B, 36, 192, 10.1111/j.2517-6161.1974.tb00999.x

BIEBERBACH L., 1912, l)ber die Bewegungsgruppen der euklidischen Riiume I, II. Math. Ann., 72, 400

BLUM H., 1967, Proceedings of the Symposium on Models for the Perception of Speech and Visual Form. Weiant Whaten- Dunn, Ed. MIT Press, 362

BLUM H., 1973, Biological shape and visual science (Part I), J. Theol'. Biol., 38, 205, 10.1016/0022-5193(73)90175-6

10.1016/S0734-189X(88)80028-8

BOISSONNAT J.-D., 1986, Proceedings of 2nd Annual ACM Symposium on Computational Geometry, 260, 10.1145/10515.10543

BOOTS B. N., 1979, Weighting Thiessen polygons, Econ. Geography, 248

CATMOG 45

BOWYER A., 1981, Computing Dirichlet tessellations, Computer J., 24, 162, 10.1093/comjnl/24.2.162

BRASSEL K. E., 1979, A procedure to generate Thiessen polygons, Geograph. Anal., 11, 289, 10.1111/j.1538-4632.1979.tb00695.x

BR~SSON E., 1989, Proceedings of the 5th Annual ACM Symposium on Computational Geometry., 218

BRONDSTED A. 1983. An Introduction to Convex Polytopes. Springer New York Heidelberg Berlin. BRONDSTED A. 1983. An Introduction to Convex Polytopes. Springer New York Heidelberg Berlin.

BR, 1975, Coordination number in liquid argon, Physica A, 80, 513, 10.1016/0378-4371(75)90099-0

BROSTOW W., 1978, Construction of Voronoi polyhedra, J. Comput. Phys., 29, 81, 10.1016/0021-9991(78)90110-9

BROWN K. Q., 1979, Voronoi diagrams from convex hulls, Inf. Process. Lett., 9, 223, 10.1016/0020-0190(79)90074-7

BROWN K. Q. 1980. Geometric transforms for fast geometric algorithms. Ph.D. dissertation Carnegie-Mellon Univ. Pittsburgh Penn. BROWN K. Q. 1980. Geometric transforms for fast geometric algorithms. Ph.D. dissertation Carnegie-Mellon Univ. Pittsburgh Penn.

BRUMBERGER H., 1983, Voronoi cells: An interesting and potentially useful cell model for interpreting the small angle scattering of catalysts, J. Appl. Crystallogr., 16, 83, 10.1107/S002188988300998X

CALABI L., 1968, Shape recognition, prairie fires, convex deficiencies, and skeletons, Am. Math. Monthly, 75, 335, 10.1080/00029890.1968.11970990

10.1007/BF02187909

10.1016/S0019-9958(85)80045-0

10.1109/TC.1987.5009474

10.1007/BF02187685

10.1137/0215022

10.1016/S0019-9958(86)80030-4

CHAZELLE B., 1990, Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 116

CH TON, 1976, Finding minimum spanning trees, SIAM J. Comput., 5, 724, 10.1137/0205051

CHEW L. P., 1986, Proceedings of the 2nd Annual ACM Symposium on Computational Geometry., 169, 10.1145/10515.10534

CHEW L. P., 1989, Constrained Delaunay triangulations, Algorithmica, 4, 97, 10.1007/BF01553881

HEW L. P. 1989b. Guaranteed-quality triangular meshes. Rep. TR 89-983 Dept. Comput. Sci. Cornell Univ. Ithaca N.Y. HEW L. P. 1989b. Guaranteed-quality triangular meshes. Rep. TR 89-983 Dept. Comput. Sci. Cornell Univ. Ithaca N.Y.

CHEW L. P., 1985, Proceedings of the 1st Annual ACM Symposium on Computational Geometry., 235, 10.1145/323233.323264

CHEW L. P., 1989, Proceedings of the 5th Annual ACM Symposium on Computational Geometry., 167

Chow A. 1980. Parallel algorithms for geometric problems. Ph.D. dissertation. Dept. Comput. Sci. Univ. of Illinois Urbana Ill. Chow A. 1980. Parallel algorithms for geometric problems. Ph.D. dissertation. Dept. Comput. Sci. Univ. of Illinois Urbana Ill.

CI~ISTOFIDES N., 1976, Symposium on Algorithms and Complexity, Carnegie-Mellon Univ., Penn.

CLARKSON K. L., 1987, New applications of random sampling to computational geometry, Discrete Comput. Geom., 2, 195, 10.1007/BF02187879

CLARKSON K. L. 1989. An algorithm for geometric minimum spanning trees requiring nearly linear expected time. Algorithmica4 461-468. CLARKSON K. L. 1989. An algorithm for geometric minimum spanning trees requiring nearly linear expected time. Algorithmica4 461-468.

CLARKSON K. L., 1988, Proceedings of the 4th Annual ACM Symposium on Computational Geometry., 12, 10.1145/73393.73395

10.1007/BF02187740

COLE R., 1990, Merging free trees in parallel for efficient Voronoi diagram construction, Springer LNCS, 443, 432

CONWAY J. M., 1982, Voronoi regions of lattices, second moments of polytopes, and quantization, IEEE Trans. Inf. Theory IT-28, 211, 10.1109/TIT.1982.1056483

CRAI, 1978, The Monte Carlo generation of random polygons, Comput. Geosci., 4, 131, 10.1016/0098-3004(78)90082-1

CRAPO H., 1979, Structural rigidity, Struct. Topol., 1, 13

CR RIVE, 1979, Distortion of certain Voronoi tessellations when one particle moves, J. Appl. Probab., 16, 95, 10.2307/3213378

DAVID E. E., 1982, Voronoi polyhedra as a tool for studying solvation structure, J. Chem. Phys., 76, 4611, 10.1063/1.443540

DE FLORIANI L. FALCIDIENO B. PIENOVI C. AND NAG~ G. 1988. On sorting triangles in a Delaunay tessellation. Rep. Inst. Mat. Appl. Consiglio Nazionale della Richerche Genova Italy. DE FLORIANI L. FALCIDIENO B. PIENOVI C. AND NAG~ G. 1988. On sorting triangles in a Delaunay tessellation. Rep. Inst. Mat. Appl. Consiglio Nazionale della Richerche Genova Italy.

DEHNE F. AND KLEIN R. 1987. An optimal algorithm for computing the Voronoi diagram on a cone. Rep. SCS-TR-122 School Comput. Sci. Carleton Univ. Ottawa Canada. DEHNE F. AND KLEIN R. 1987. An optimal algorithm for computing the Voronoi diagram on a cone. Rep. SCS-TR-122 School Comput. Sci. Carleton Univ. Ottawa Canada.

DEHNE F., 1985, Proceedings of the 1st Annual ACM Symposium on Computational Geometry., 245, 10.1145/323233.323265

DELAUNAY B. N., 1932, Neue Darstellung der geometrischen Kristallographie, Z. Kristallograph., 84, 109

DELAUNAY B. N., 1934, Sur la sphere vide, Bull. Acad. Science USSR VII: Class. Sci. Math., 793

DELAUNAY B. N., 1963, Theorie der regul~iren Dirichletschen Zerlegungen des n-dimensionalen euklidischen Raumes, Schrifienre~he Int. Math. Dtsch. Akad. Wiss. Berlin, 13, 27

DELAUNAY B. N., 1978, Combinatorial and metric theory of planigons, Trudy Mat. Inst. Steklov, 148, 109

DEWDNEY A. K. 1977. Complexity of nearest neighbour searching in three and higher dimensions. Rep. 28 Univ. of Western Ontario London Ontario. DEWDNEY A. K. 1977. Complexity of nearest neighbour searching in three and higher dimensions. Rep. 28 Univ. of Western Ontario London Ontario.

DEWDNEY A. K., 1977, A convex partition of R3 with applications to Crum's problem and Knuth's post-office problem, Util. Math., 12, 193

10.1016/0020-0190(87)90160-8

10.1016/0020-0190(87)90124-4

DILLENCOURT M. B., 1987, Proceedings of the 3rd Annual ACM Symposium on Computational Geometry., 186

DIRICHLET G. L., 1850, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Re~ne u, Angew. Math., 40, 209

DOBKIN D. P., 1989, PrimL tives for the manipulation of three-dimensional subdivisions, Algorithmica, 4, 3, 10.1007/BF01553877

DOBKIN D. P., 1976, Multidimensional searching problems, SIAM J. Comput., 5, 181, 10.1137/0205015

10.1007/BF02187801

DRYSDALE R. L., 1990, Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms., 159

DWYER R. A., 1987, A faster divide-and-conquer algorithm for constructing Delaunay triangulations, Algorithmica, 2, 137, 10.1007/BF01840356

DWYER R. A., 1989, Proceedings of the 5th Annual ACM Symposium on Computational Geometry., 326

10.1145/357337.357338

10.1007/BF01840438

EDELSBRUNNER H. 1987. Algorithms in Combinatorial Geometry. Springer Berlin-Heidelberg. EDELSBRUNNER H. 1987. Algorithms in Combinatorial Geometry. Springer Berlin-Heidelberg.

EDELSBRUNNER, 1989, Proceedings of the 5th Annual ACM Symposium on Computational Geometry., 145

EDELSBRUNNER H., 1985, Finding extreme points in three dimensions and solving the post-office problem in the plane, Inf. Process. Lett., 21, 39, 10.1016/0020-0190(85)90107-3

10.1007/BF02187681

EDELSBRUNNER H., 1985, On the number of line separations of a finite set in the plane, J. Combin. Theory Ser. A, 15, 10.1016/0097-3165(85)90017-2

EDELSBRUNNER H., 1989, The upper envelope of piecewise linear functions: algorithms and applications, Discrete Comput. Geom., 4, 311, 10.1007/BF02187733

10.1137/0215023

EDELSBRUNNER H., 1983, On the shape of a set of points in the plane, IEEE Trans. Inf. Theory IT-29,551-559., 10.1109/TIT.1983.1056714

10.1137/0215024

EDELSBRUNNER H., 1987, Testing the necklace condition for shortest tours and optimal factors in the plane, Springer LNCS, 267, 364

EHRLICH P. E., 1979, Dirichlet regions in manifolds without conjugate points, Comment. Math. Helvet., 54, 642, 10.1007/BF02566298

EISELT H. A., 1986, Voronoi diagrams and their use: A survey. Part I: Theory; Part II: Applications. In S. Goyal, Ed. Proceedings of the ASAC, 7, 2. pp. 98

ENGEL P., 1981, lJber Wirkungsbereichsteilungen mit kubischer Symmetrie, Z. Kristallograph., 154, 199

EPPSTE~N D., 1990, Finding the k smallest spanning trees, Springer LNCS, 447, 38

FAIRFIELD J., 1979, Proceedings of the IEEE Conference on Systems Man Cybernetics., 60

FAIRFIELD J., 1983, Segmenting dot patterns by Voronoi diagram concavity, IEEE Trans. Part. Anal. Mach. Int. PAMI-5, 104, 10.1109/TPAMI.1983.4767353

FEDEROFF E. S., 1885, Elemente der Lehre yon den Figuren, Verh. Russ Min. Ges. St. Petersburg, 21, 1

FIELD D. A., 1986, Proceedings of the 2nd Annual ACM Symposium on Computational Geometry., 246, 10.1145/10515.10542

FINNEY J. L., 1979, Procedure for the construction of Voronoi polyhedra. Note, J. Comput. Phys., 32, 137, 10.1016/0021-9991(79)90146-3

FORTUNE S., 1985, A fast algorithm for polygon containment by translation, Springer LNCS, 194, 189

FORTUNE S., 1987, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2, 153, 10.1007/BF01840357

FORTUNE S. 1988. Sorting helps for Voronoi diagrams. Manuscript ATT Bell Lab. Murray Hill N.J. FORTUNE S. 1988. Sorting helps for Voronoi diagrams. Manuscript ATT Bell Lab. Murray Hill N.J.

FRANK F. C., 1958, Complex alloy structures regarded as sphere packings, Acta Crystallogr., 11, 184, 10.1107/S0365110X58000487

GABRIEL K. R, 1969, A new statistical approach to geographic variation analysis, Syst. Zoology, 18, 259, 10.2307/2412323

GAMBINI R. 1966. A computer program for calculating lines of equilibrium between multiple centers of attraction. Manuscript Center of Regional Studies Univ. of Kansas Lawrence Kan. GAMBINI R. 1966. A computer program for calculating lines of equilibrium between multiple centers of attraction. Manuscript Center of Regional Studies Univ. of Kansas Lawrence Kan.

GAREY M. R., 1976, Proceedings of the 8th Annual ACM Symposium on STOC., 10

GAUSS C. F., 1840, Recursion der 'Untersuchungen fiber die Eigenschaften der positiven tern~iren quadratischen Formen von Ludwig August Seeber, J. Reine Angew. Math., 20, 312

GILBERT E. N., 1962, Random subdivisions of space into crystals, Ann. Math. Star., 33, 958, 10.1214/aoms/1177704464

GOODRICH M. T., 1989, Constructing the Voronoi diagram of a set of line segments in parallel, Springer LNCS, 382, 12

GOWDA I. G., 1983, Dynamic Voronoi diagrams, IEEE Trans. Inf Theory IT-29, 724, 10.1109/TIT.1983.1056738

GREEN P. J., 1977, Computing Dirichlet tesselations in the plane, Comput. J., 21, 168, 10.1093/comjnl/21.2.168

GRUBER P. M. AND LEKKERKERKER C. G. 1988. Geometry of Numbers. North-Holland Publishing Co. Amsterdam. GRUBER P. M. AND LEKKERKERKER C. G. 1988. Geometry of Numbers. North-Holland Publishing Co. Amsterdam.

GRUBER P. M. AND RYSKOV S. S. 1987. Facet-tofacet implies face-tofface. Manuscript. GRUBER P. M. AND RYSKOV S. S. 1987. Facet-tofacet implies face-tofface. Manuscript.

GRfiNBAUM B. 1967. Convex Polytopes. Interscience New York. GRfiNBAUM B. 1967. Convex Polytopes. Interscience New York.

GR BAUM, 1980, Tilings with congruent tiles, Bull. Am. Math. Soc., 3, 951, 10.1090/S0273-0979-1980-14827-2

GRUNBAUM B. AND SHEPHARD G. C. 1987. Tilings and Patterns. Freeman and Co. New York. GRUNBAUM B. AND SHEPHARD G. C. 1987. Tilings and Patterns. Freeman and Co. New York.

10.1145/282918.282923

GUIBAS L. J., 1990, Randomized incremental construction of Delaunay and Voronoi diagrams, Springer LNCS, 443, 414

GUIBAS L. J. MITCHELL J. S. B. AND ROOS T. 1991. Voronoi diagrams of moving points in the plane. Springer LNCS. In press. GUIBAS L. J. MITCHELL J. S. B. AND ROOS T. 1991. Voronoi diagrams of moving points in the plane. Springer LNCS. In press.

HARTIGAN J. A. 1975. Clustering Algorithms. John Wiley New York. HARTIGAN J. A. 1975. Clustering Algorithms. John Wiley New York.

10.1016/0196-6774(89)90013-8

10.1016/0020-0190(88)90150-0

HLNRICHS K., 1988, A sweep algorithm for the all-nearestneighbors problem, Springer LNCS, 333, 43

HORTON R. E., 1917, Rational study of rainfall data make~ possible bettor estimates of water yield, Eng. News-Record, 211

HOWE S. E. 1978. Estimating regions and clustering spatial data: Analysis and implementation of methods using the Voronoi diagram. Ph.D. dissertation Brown Univ. Providence R.I. HOWE S. E. 1978. Estimating regions and clustering spatial data: Analysis and implementation of methods using the Voronoi diagram. Ph.D. dissertation Brown Univ. Providence R.I.

HUTTENLOCHER D. P., 1991, Proceedings of the 7th Annual ACM Symposium on Computational Geometry, 194-203

10.1145/322123.322124

IMAI H., 1985, Voronoi diagram in the Laguerre geometry and its applications, SIAM J. Comput., 14, 93, 10.1137/0214006

IMAI~ K., 1989, Proceedings of the 5th Annual ACM Symposium on Computational Geometry., 266

JOHNSON W. A., 1939, Reaction kinetics in processes of nucleation and growth, Trans. Am. Instit. Mining Metall. A.LM.M.E., 135, 416

KANTABUTRA V., 1983, Traveling salesman cycles are not always subgraphs of Voronoi duals, Inf. Process. Lett., 16, 11, 10.1016/0020-0190(83)90004-2

KEEL J. M., 1989, The Delaunay triangulation closely approximates the complete Euclidean graph, Springer LNCS, 382, 47

KL~NG T., 1966, Random fragmentation in two and three dimensions, Z. Astrophysik, 64, 433

KPATRICK D. G., 1979, Proceedings of the 20th Annual IEEE Symposium on FOCS., 18

KPATRICK D. G., 1980, A note on Delaunay and optimal triangulations, Inf Process. Lett., 10, 127, 10.1016/0020-0190(80)90062-9

KPATRICK D. G., 1983, Optimal search in planar subdivisions, SIAM J. Comput., 12, 28, 10.1137/0212002

KLEE V., 1980, On the complexity of d-dimensional Voronoi diagrams, Archiv Math., 34, 75, 10.1007/BF01224932

KLEIN R. 1989. Concrete and Abstract Voronoi D~agrams. Springer LNCS 400. KLEIN R. 1989. Concrete and Abstract Voronoi D~agrams. Springer LNCS 400.

KLEIN R., 1988, Voronoi diagrams based on general metrics in the plane, Springer LNCS, 294, 281

KNUTH D. 1973. The Art of Computer Programming III: Sorting and Searching. Addison- Wesley Reading Mass. KNUTH D. 1973. The Art of Computer Programming III: Sorting and Searching. Addison- Wesley Reading Mass.

E., 1973, Wirkungsbereichspolyeder und Wirkungsbereichsteilungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden, Z. Kristallograph., 138, 196, 10.1524/zkri.1973.138.138.196

KO EC, R, 1963, An alternative method for the construction of Thiessen polygons, Professional Geographer, 15, 24, 10.1111/j.0033-0124.1963.024_r.x

KUUSKAL J. B., 1956, On the shortest spanning subtree of a graph and the traveling salesman problem, Problem. Am. Math. Soc., 7, 48, 10.1090/S0002-9939-1956-0078686-7

LANTUEJOUL C., 1984, Geodesic methods in quantitative image analysis, Pattern Recogn., 17, 177, 10.1016/0031-3203(84)90057-8

LAVES P., 1930, Ebeneneinteilung in Wirkungsbereiche, Z. Kristallograph., 76, 277

LAWSON C. L. 1972. Generation of a triangular grid with applications to contour plotting. Tech. Memorandum 299 California Inst. Tech. Jet Propulsion Lab. LAWSON C. L. 1972. Generation of a triangular grid with applications to contour plotting. Tech. Memorandum 299 California Inst. Tech. Jet Propulsion Lab.

LAWSON C. L. 1977. Software for C1 surface interpolation. In Mathematical Software III J. Rice Ed. Academic Press New York. LAWSON C. L. 1977. Software for C1 surface interpolation. In Mathematical Software III J. Rice Ed. Academic Press New York.

10.1145/322217.322219

LEE D. T., 1982, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput. C-31,478-487.

LEE D. T., 1982, Medial axis transform of a planar shape, IEEE Trans. Patt. Anal. Mach. Intell. PAMI-4, 363, 10.1109/TPAMI.1982.4767267

LEE D. T., 1981, Generalization of Voronoi diagrams in the plane, SIAM J. Comput., 10, 73, 10.1137/0210006

LEE D. T., 1986, Generalized Delaunay triangulation for planar graphs, Discrete Comput. Geom., 1, 201, 10.1007/BF02187695

LEE D. T., 1984, Computational geometry--A survey, IEEE Trans. Cornput. C., 33, 1072, 10.1109/TC.1984.1676388

LEE D. T., 1980, Two algorithms for constructing a Delaunay triangulation, Int. J. Comput. Inf. Sci., 9, 219, 10.1007/BF00977785

LEE D. T., 1980, Voronoi diagrams in the Ll(L~) metrics with 2- dimensional storage applications, SIAM J. Comput., 9, 200, 10.1137/0209017

LEE D. T., 1979, Location of multiple points in a planar subdivision, Inf. Process. Lett., 9, 190, 10.1016/0020-0190(79)90066-8

LEVEN D., 1986, Intersection and proximity problems and Voronoi diagrams, Adv. Robotics, 1, 187

LE, 1987, Planning a purely translational motion of a convex robot in two-dimensional space using Voronoi diagrams, Discrete Comput. Geom., 2, 9, 10.1007/BF02187867

10.1016/0020-0190(86)90038-4

LINGAS A. 1986b. A fast algorithm for the generalized Delauuay triangulation. Manuscript Univ. of LinkSping Sweden. LINGAS A. 1986b. A fast algorithm for the generalized Delauuay triangulation. Manuscript Univ. of LinkSping Sweden.

10.1016/0020-0190(89)90043-4

LINHART J., 1981, Die Beleuchtung yon Kugeln, Geom. Dedicata, 10, 145, 10.1007/BF01447418

LITTLE D. V., 1974, A third note on recent research in geometric probability, Adv. Appl. Probab., 6, 103, 10.2307/1426209

LOEB A. L., 1970, A systematic survey of cubic crystal structures, J. Solid State Chem., 237, 10.1016/0022-4596(70)90021-6

MANACHER G. K., 1979, Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation, Inf. Process. Lett., 9, 31, 10.1016/0020-0190(79)90104-2

MATULA D. W., 1980, Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane, Geograph. Anal., 12, 205, 10.1111/j.1538-4632.1980.tb00031.x

MATZKE E. B., 1946, Volumeshape relationships in variant foams, Am. J. Botanics, 33, 130

MAUS A., 1884, Delaunay triangulation and the convex hull of n points in expected linear time, BIT, 24, 151, 10.1007/BF01937482

MAXWELL J. C., 1864, On reciprocal diagrams and diagrams of forces, Phil. Mag., 4, 250, 10.1080/14786446408643663

LAIN D. H., 1976, Two dimensional interpolation from random data, Comput. J., 19, 178, 10.1093/comjnl/19.2.178

MEGIDDO N., 1983, Linear time algorithms for linear programming in R3 and related problems, SlAM J. Comput., 12, 759

MEHLHORN K., 1990, On the construction of abstract Voronoi diagrams, Springer LNCS, 415, 227

MEIJERING J. L., 1953, Interface area, edge length, and number of vertices in crystal aggregates with random nucleation, Philips Res. Rept., 8, 270

MILES R. E., 1970, On the homogenous planar Poisson process, Math. Biosci., 6, 85, 10.1016/0025-5564(70)90061-1

10.1137/0216045

MOLLISON D., 1977, Spatial contact models for ecological and epidemic spread, J. Roy. Stat. Soc. B, 39, 283, 10.1111/j.2517-6161.1977.tb01627.x

10.1145/321479.321486

MORAN P. A., 1966, A note on recent research in geometric probability, J. Appl. Probab., 3, 53, 10.1017/S0021900200114251

MORAN P. A., 1969, A second note on recent research in geometrical probability, Adv. Appl. Probab., 1, 73, 10.2307/1426409

MOUNT D. M. 1985. Voronoi diagrams on the surface of a polyhedron. Rep. 1496 Univ. of Maryland. MOUNT D. M. 1985. Voronoi diagrams on the surface of a polyhedron. Rep. 1496 Univ. of Maryland.

MOUNT D. M., 1986, Proceedings of the 2nd Annual ACM Symposium on Computational Geometry., 150, 10.1145/10515.10532

MOUNT D., 1988, Proceedings of the 4th Annual ACM Symposium on Computational Geometry., 143, 10.1145/73393.73408

MUDER D. J. 1988a. How big is an n-sided Voronoi polygon? Manuscript MITRE Corp. Bedford Mass. MUDER D. J. 1988a. How big is an n-sided Voronoi polygon? Manuscript MITRE Corp. Bedford Mass.

MUDER D. J., 1988, Putting the best face on a Voronoi polyhedron, Proc. London Math. Soc., 56, 329, 10.1112/plms/s3-56.2.329

MULMULEY K. 1991. On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom. In press. 10.1007/BF02574692 MULMULEY K. 1991. On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom. In press. 10.1007/BF02574692

MURTADH F., 1983, A survey of recent advances in hierarchical clustering algorithms, Computer J., 26, 354, 10.1093/comjnl/26.4.354

NEWMAN C. M., 1983, Nearest neighbor and Voronoi regions in certain point processes, Adv. Appl. Probab., 15, 726, 10.2307/1427321

NIGGLI R., 1927, Die topologische Strukturanalyse, Z. KristaUograph., 65, 391

NOWACKI W., 1933, Der Begriff 'Voronoischer Bereich, Z. Kristallograph., 85, 331

NOWACKI W., 1976, Uber allgemeine Eigenschaften von Wirkungsbereichen, Z. KristaUograph., 143, 360

O'DUNLAING C., 1985, A "retraction'' method for planning the motion of a disc, J. Algorithms, 6, 104, 10.1016/0196-6774(85)90021-5

O'DUNLAING C., 1986, Generalized Voronoi diagrams for moving a ladder: I. Topological analysis, Comm. Pure Appl. Math., 39, 423, 10.1002/cpa.3160390402

O'DUNLAING C., 1987, Generalized Voronoi diagrams for moving a ladder: II. Efficient construction of the diagram, Algorithmica, 2, 27, 10.1007/BF01840348

10.1016/0020-0190(84)90116-9

OHYA T., 1984, Improvements of the incremental methods for the Voronoi diagram with computational comparison of various algorithms, J. Operations Res. Soc. Japan, 27, 306, 10.15807/jorsj.27.306

OKABE A., 1988, The statistical analysis of a distribution of active points in relation to surface-like elements, Environ. Plan. A, 20, 609, 10.1068/a200609

OVERMARS M., 1981, Dynamization of order decomposable set problems, J. Algorithms, 2, 245, 10.1016/0196-6774(81)90025-0

PACH J., 1989, The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates, Discrete Comput. Geom., 4, 291, 10.1007/BF02187732

PAPADTMITRIOU C. H., 1977, The Euclidean traveling salesman problem is NP-complete, Theor. Comp. Sci., 4, 237, 10.1016/0304-3975(77)90012-3

PASCHINGER I. 1982. Konvexe Polytope und Dirichletsche Zellenkomplexe. Ph.D. Dissertation Inst. f Math. Univ. Salzburg Austria. PASCHINGER I. 1982. Konvexe Polytope und Dirichletsche Zellenkomplexe. Ph.D. Dissertation Inst. f Math. Univ. Salzburg Austria.

PmLBRICK 0. 1968. Shape recognition with the medial axis transform. In P~ctorial Pattern Reeognitwn G. C. Cheng R. S. Ledley D. K Pollock and A. Rosenfeld Eds. Washington D.C. PmLBRICK 0. 1968. Shape recognition with the medial axis transform. In P~ctorial Pattern Reeognitwn G. C. Cheng R. S. Ledley D. K Pollock and A. Rosenfeld Eds. Washington D.C.

PRE RATA, 1977, Ill., pp, 23-24

10.1145/359423.359430

PREPARATA F. P., 1985, Computational Geometry: An Introduction, 10.1007/978-1-4612-1098-6

PRIM R. C., 1957, Shortest connection networks and some generalizations Bell, Syst. Tech. J., 36, 1389, 10.1002/j.1538-7305.1957.tb01515.x

RAJAN V. T., 1991, Proceedings of the 7th Annual ACM Symposium on Computational Geometry, 357, 10.1145/109648.109688

RHYNSBURGER D., 1973, Analytical delineation of Thiessen polygons, Geograph. Anal., 5, 133, 10.1111/j.1538-4632.1973.tb01003.x

10.1016/0167-8396(90)90011-F

ROGERS C. A. 1964. Packing and Covering. Cambridge University Press London New York. ROGERS C. A. 1964. Packing and Covering. Cambridge University Press London New York.

ROHNERT H., 1988, Moving discs between polygons, Springer LNCS, 317, 502

ROSENBERCER H. 1988. Order-k Voronoi diagrams of sites with additive weights in the plane. Rep. UIUCDCS-R-88-1431 Dept. Cornput. Sci. Univ. Illinois Urbana Ill. ROSENBERCER H. 1988. Order-k Voronoi diagrams of sites with additive weights in the plane. Rep. UIUCDCS-R-88-1431 Dept. Cornput. Sci. Univ. Illinois Urbana Ill.

ROSENKRANTZ D. J., 1977, An analysis of several heuristics for the traveling salesman problem, SIAM J. Comput., 6, 563, 10.1137/0206041

ROWAT P. F. 1979. Representing spatial experience and solving spatial problems in a simulated robot environment. Ph.D. dissertation Univ. of British Columbia Canada. ROWAT P. F. 1979. Representing spatial experience and solving spatial problems in a simulated robot environment. Ph.D. dissertation Univ. of British Columbia Canada.

SAI MOTO, 1988, Patterns of weighted Voronoi tessellations, Sct. Form, 3, 103

SCH()NFLIES A. 1891. Kristallsysteme und Kirstallstruktur. Teubner Leipzig. SCH()NFLIES A. 1891. Kristallsysteme und Kirstallstruktur. Teubner Leipzig.

SCHWARTZ J. AND YAP C. K. 1986. Advances in Robotics. Lawrence Erlbaum Associates Hillside N.J. SCHWARTZ J. AND YAP C. K. 1986. Advances in Robotics. Lawrence Erlbaum Associates Hillside N.J.

SCHWARZKOPF O., 1989, Parallel computation of discrete Voronoi diagrams, Springer LNCS, 349, 193

SEIDEL R. 1981. A convex hull algorithm optimal for point sets in even dimensions. Rep. 81-14 Univ. of Britmh Columbia Vancouver Canada. SEIDEL R. 1981. A convex hull algorithm optimal for point sets in even dimensions. Rep. 81-14 Univ. of Britmh Columbia Vancouver Canada.

SEIDEL R., 1982, Proceedings of the 20th Annual Allerton Conference on CCC., 94

SEIDEL R. 1985 A method for proving lower bounds for certain geometric problems. In Computational Geometry G. T. Toussaint Ed. pp. 319-334. SEIDEL R. 1985 A method for proving lower bounds for certain geometric problems. In Computational Geometry G. T. Toussaint Ed. pp. 319-334.

SEIDEL R., 1986, Proceedings of the 18th Annual ACM Symposium on STOC., 404

SE EL, R, 1987, Proceedings of the 3rd Annual Symposium on Computational Geometry., 181

SEIDEL R., 1988, IIG-TU Graz, 178

SHAMOS M. I., 1975, Proceedings of the 7th Annual ACM Symposium on STOC., 224

SRAMOS M. I. 1978. Computational geometry. Ph.D. dissertation Yale Univ. New Haven Conn. SRAMOS M. I. 1978. Computational geometry. Ph.D. dissertation Yale Univ. New Haven Conn.

SR MOS, 1975, Proceedings of the 16th Annual IEEE Symposium on FOCS, 151

SHAR, 1985, Intersection and closest-pair problems for a set of planar discs, SIAM J. Comput., 14, 448, 10.1137/0214034

R., 1977, Locally equiangular triangulations, Comput. J., 21, 243

R., 1979, The Dirichlet tessellation as an aid in data analysis, Scandinavian J. Stat., 7, 14

R., 1980, A vector identity for the Dlrichlet tessellation, Math. Proc. Camb. Phil. Soc., 87, 151, 10.1017/S0305004100056589

SIFRONY S., 1986, Proceedings of the 2nd Annual ACM Symposium on Computational Geometry., 178, 10.1145/10515.10535

SMITH C. S., 1954, The shape of things. Sci, Am., 58

SNYDE, 1962, Urban places in Uruguay and the concept of a hierarchy. Festschrift, C. F. Jones. Northwestern University Studies in Geography, 6, 29

STIFTER S. 1989. An axiomatic approach to Voronoi diagrams in 3D. Manuscript RISC Univ. of Linz Austria. STIFTER S. 1989. An axiomatic approach to Voronoi diagrams in 3D. Manuscript RISC Univ. of Linz Austria.

SUGISARA K. AND IRI M. 1988. Geometric algorithms in finite-precision arithmetic. Research Memorandum RMI 88-10 Faculty of Engineering Univ. of Tokyo Japan. SUGISARA K. AND IRI M. 1988. Geometric algorithms in finite-precision arithmetic. Research Memorandum RMI 88-10 Faculty of Engineering Univ. of Tokyo Japan.

10.1145/2402.322386

SUZUKI A., 1986, Approximation of a tessellation of the plane by a Voronoi diagram, J. Operations Res. Soc. Japan, 29, 69, 10.15807/jorsj.29.69

TANEMURA M., 1983, A new algorithm for three-dimensional Voronoi tessellation, J. Comput. Phys., 51, 191, 10.1016/0021-9991(83)90087-6

T~SKI A. 1951. A decision method for elementary algebra and geometry. Univ. of California Press Berkeley Calif. T~SKI A. 1951. A decision method for elementary algebra and geometry. Univ. of California Press Berkeley Calif.

TH SSEN, 1911, Precipitation average for large area, Monthly Weather Rev., 39, 1082, 10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2

TOKUYAMA T. 1988. Deformation of merged Voronoi diagrams with translation. Rep. TR- 88-0049 IBM Tokyo Research Lab. TOKUYAMA T. 1988. Deformation of merged Voronoi diagrams with translation. Rep. TR- 88-0049 IBM Tokyo Research Lab.

TOUSSA~NT G. T., 1980, The relative neighborhood graph of a finite planar set, Pattern Recogn., 12, 261, 10.1016/0031-3203(80)90066-7

TOUSSAINT G. T. ANn BHATTACHARYA B. K. 1981. On geometric algorithms that use the furthestpoint Voronoi diagram. Rep. 81-3 McGill Univ. Montreal Quebec Canada. TOUSSAINT G. T. ANn BHATTACHARYA B. K. 1981. On geometric algorithms that use the furthestpoint Voronoi diagram. Rep. 81-3 McGill Univ. Montreal Quebec Canada.

TUOMIN~N O., 1949, Das EinfiuBgebeit der Stadt Turku ins System der Einfiuflgebiete SW--Finnlands, Fennia, 71, 1

URQUHART R. 1980. A note on the computation of subgraphs of the Delaunay triangulation. Rep. Univ. of Glasgow U.K. URQUHART R. 1980. A note on the computation of subgraphs of the Delaunay triangulation. Rep. Univ. of Glasgow U.K.

10.1137/0217035

VAIDYA P. M., 1988, Proceedings of the 20th Annual ACM Symposium on STOC., 422

VORONOI M. G., 1908, Nouvelles applications des parametres continus a la theorie des formes quadratiques, J. Reine Angew. Math., 134, 198, 10.1515/crll.1908.134.198

WANG C. A., 1987, Proceedings of the 3rd Annual ACM Symposium on Computational Geometry., 223

WATSON D. F., 1981, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, Comput. J., 24, 167, 10.1093/comjnl/24.2.167

WEA E, D, 1984, Soap, cells, and statistics--random patterns in two dimensions, Contemp. Phys., 25, 59, 10.1080/00107518408210979

TELEY W., 1979, Realizability of polyhedra, Structural Topol., 1, 46

10.1137/0216049

WIGNER E., 1933, On the constitution of metallic sodium, Phys. Rev., 43, 804, 10.1103/PhysRev.43.804

LIAMS R. E., 1968, Space-filling polyhedron: Its relation to aggregates of soap bubbles, plant cells, and metal crystalites, Science, 161, 276, 10.1126/science.161.3838.276

YAO A. C., 1975, An O(E log log V) algorithm for finding minimum spanning trees, Inf. Process. Lett., 4, 21, 10.1016/0020-0190(75)90056-3

YAO A. C., 1982, On constructing minimum spanning trees in k-dimensional spaces and related problems, SIAM J. Comput., 11, 721, 10.1137/0211059

YAP C. K., 1987, An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments, Discrete Comput. Geom., 2, 365, 10.1007/BF02187890