Volumetric properties underlying ligand binding in a monomeric hemoglobin: A high-pressure NMR study
Tài liệu tham khảo
Kendrew, 1958, A three-dimensional model of the myoglobin molecule obtained by X-ray analysis, Nature, 181, 662, 10.1038/181662a0
Perutz, 1966, An X-ray study of azide methaemoglobin, J. Mol. Biol., 21, 199, 10.1016/0022-2836(66)90088-X
Smith, 2010, Straight-chain alkyl isocyanides open the distal histidine gate in crystal structures of myoglobin, Biochemistry, 49, 4977, 10.1021/bi1001739
Scott, 2001, Mapping the pathways for O2 entry into and exit from myoglobin, J. Biol. Chem., 276, 5177, 10.1074/jbc.M008282200
Kakar, 2010, Structure and reactivity of hexacoordinate hemoglobins, Biophys. Chem., 152, 1, 10.1016/j.bpc.2010.08.008
Gardner, 2012, Hemoglobin, a nitric-oxide dioxygenase, Scientifica, 2012, 10.6064/2012/683729
Scott, 2002, The hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein, Biochemistry, 41, 6902, 10.1021/bi025609m
Scott, 2010, Functional and structural characterization of the 2/2 hemoglobin from Synechococcus sp. PCC 7002, Biochemistry, 49, 7000, 10.1021/bi100463d
Pesce, 2000, A novel two-over-two α-helical sandwich fold is characteristic of the truncated hemoglobin family, EMBO J., 19, 2424, 10.1093/emboj/19.11.2424
Trent, 2004, Crystallographic analysis of synechocystis cyanoglobin reveals the structural changes accompanying ligand binding in a hexacoordinate hemoglobin, J. Mol. Biol., 341, 1097, 10.1016/j.jmb.2004.05.070
Wittenberg, 2002, Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants, J. Biol. Chem., 277, 871, 10.1074/jbc.R100058200
Milani, 2004, Heme-ligand tunneling in group I truncated hemoglobins, J. Biol. Chem., 279, 21520, 10.1074/jbc.M401320200
Cooper, 1976, Thermodynamic fluctuations in protein molecules, Proc. Natl. Acad. Sci. U. S. A., 73, 2740, 10.1073/pnas.73.8.2740
Vuletich, 2006, Structural and dynamic repercussions of heme binding and heme-protein cross-linking in Synechococcus sp. PCC 7002 hemoglobin, Biochemistry, 45, 14075, 10.1021/bi061532g
Pond, 2009, 1H, 15N, and 13C resonance assignments of the 2/2 hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 in the ferric bis-histidine state, Biomol. NMR Assign., 3, 211, 10.1007/s12104-009-9177-1
Pond, 2012, Influence of heme post-translational modification and distal ligation on the backbone dynamics of a monomeric hemoglobin, Biochemistry, 51, 5733, 10.1021/bi300624a
Sklenář, 1990, Selective excitation techniques for water suppression in one- and two-dimensional NMR spectroscopy, Basic Life Sci., 56, 63
Piotto, 1992, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions, J. Biomol. NMR, 2, 661, 10.1007/BF02192855
Stoven, 1989, PARIS, a program for automatic recognition and integration of 2D NMR signals, J. Magn. Reson., 82, 163
Pons, 1996, Gifa V. 4: a complete package for NMR data set processing, J. Biomol. NMR, 8, 445, 10.1007/BF00228146
Grzesiek, 1996, The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase, Nat. Struct. Biol., 3, 340, 10.1038/nsb0496-340
Li, 1998, Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor, Biochemistry, 37, 1167, 10.1021/bi972288j
Kitahara, 2000, High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase, Biochemistry, 39, 12789, 10.1021/bi0009993
Kamatari, 2001, Response of native and denatured hen lysozyme to high pressure studied by 15N/1H NMR spectroscopy, Eur. J. Biochem., 268, 1782, 10.1046/j.1432-1327.2001.02050.x
Kitahara, 2005, NMR snapshots of a fluctuating protein structure: ubiquitin at 30bar–3kbar, J. Mol. Biol., 347, 277, 10.1016/j.jmb.2005.01.052
Refaee, 2003, Pressure-dependent changes in the solution structure of hen egg-white lysozyme, J. Mol. Biol., 327, 857, 10.1016/S0022-2836(03)00209-2
Akasaka, 2001, Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR, Biochemistry, 40, 8665, 10.1021/bi010312u
Kuwata, 2001, High pressure NMR reveals a variety of fluctuating conformers in β-lactoglobulin, J. Mol. Biol., 305, 1073, 10.1006/jmbi.2000.4350
Kamatari, 2011, Cavity hydration as a gateway to unfolding: an NMR study of hen lysozyme at high pressure and low temperature, Biophys. Chem., 156, 24, 10.1016/j.bpc.2011.01.009
Kitahara, 2013, Pressure-induced chemical shifts as probes for conformational fluctuations in proteins, Prog. Nucl. Magn. Reson. Spectrosc., 71, 35, 10.1016/j.pnmrs.2012.12.001
Preimesberger, 2012, Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, J. Biol. Inorg. Chem., 17, 599, 10.1007/s00775-012-0880-5
La Mar, 2000, Nuclear magnetic resonance of hemoproteins, vol. 5, 185
Schmitz, 2008, Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts, J. Biomol. NMR, 41, 179, 10.1007/s10858-008-9249-z
Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Thompson, 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673
Schneider, 1990, Sequence logos: a new way to display consensus sequences, Nucleic Acids Res., 18, 6097, 10.1093/nar/18.20.6097
Perez-Bercoff, 2006, LogoBar: bar graph visualization of protein logos with gaps, Bioinformatics, 22, 112, 10.1093/bioinformatics/bti761
Ashkenazy, 2010, ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Res., 38, W529, 10.1093/nar/gkq399
Ash, 1965
Gouveia-Oliveira, 2009, InterMap3D: predicting and visualizing co-evolving protein residues, Bioinformatics, 25, 1963, 10.1093/bioinformatics/btp335
Tillier, 2003, Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments, Bioinformatics, 19, 750, 10.1093/bioinformatics/btg072
Akasaka, 1999, Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI, Protein Sci., 8, 1946, 10.1110/ps.8.10.1946
Sitkoff, 1998, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. Nucl. Mag. Res. Sp., 32, 165, 10.1016/S0079-6565(98)00013-2
Ho, 2008, HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures, BMC Struct. Biol., 8, 49, 10.1186/1472-6807-8-49
Dundas, 2006, CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues, Nucleic Acids Res., 34, W116, 10.1093/nar/gkl282
Weber, 1983, The effect of high pressure upon proteins and other biomolecules, Q. Rev. Biophys., 16, 89, 10.1017/S0033583500004935
Kim, 2006, High-pressure studies on protein aggregates and amyloid fibrils, Methods Enzymol., 413, 237, 10.1016/S0076-6879(06)13013-X
Hummer, 1998, The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins, Proc. Natl. Acad. Sci. U. S. A., 95, 1552, 10.1073/pnas.95.4.1552
Paliwal, 2004, Pressure denaturation of staphylococcal nuclease studied by neutron small-angle scattering and molecular simulation, Biophys. J., 87, 3479, 10.1529/biophysj.104.050526
Collins, 2005, Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation, Proc. Natl. Acad. Sci. U. S. A., 102, 16668, 10.1073/pnas.0508224102
Royer, 2002, Revisiting volume changes in pressure-induced protein unfolding, Biochim. Biophys. Acta, 1595, 201, 10.1016/S0167-4838(01)00344-2
Neri, 1992, Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form, Proc. Natl. Acad. Sci. U. S. A., 89, 4397, 10.1073/pnas.89.10.4397
Roche, 2012, Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations, Biochemistry, 51, 9535, 10.1021/bi301071z
Li, 2006, Conformational fluctuations of proteins revealed by variable pressure NMR, Biochim. Biophys. Acta, 1764, 331, 10.1016/j.bbapap.2005.12.014
Bertini, 1999, Heme methyl 1H chemical shifts as structural parameters in some low-spin ferriheme proteins, J. Biol. Inorg. Chem., 4, 515, 10.1007/s007750050337
Shelnutt, 1998, Nonplanar porphyrins and their significance in proteins, Chem. Soc. Rev., 27, 31, 10.1039/a827031z
Milani, 2004, Cyanide binding to truncated hemoglobins: a crystallographic and kinetic study, Biochemistry, 43, 5213, 10.1021/bi049870+
Vu, 2004, Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin, Biochemistry, 43, 12622, 10.1021/bi048726l
Vinogradov, 2005, Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life, Proc. Natl. Acad. Sci. U. S. A., 102, 11385, 10.1073/pnas.0502103102
Suel, 2003, Evolutionarily conserved networks of residues mediate allosteric communication in proteins, Nat. Struct. Biol., 10, 59, 10.1038/nsb881
Baussand, 2009, A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence, PLoS Comput. Biol., 5, e1000488, 10.1371/journal.pcbi.1000488
Morishima, 1980, High-pressure proton nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural change in heme environments of myoglobin, hemoglobin, and horseradish peroxidase, Biochemistry, 19, 1569, 10.1021/bi00549a006
Kitahara, 2003, High-pressure 1H NMR study of pressure-induced structural changes in the heme environments of metcyanomyoglobins, Protein Sci., 12, 207, 10.1110/ps.4620103
Kitahara, 2002, High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded, J. Mol. Biol., 320, 311, 10.1016/S0022-2836(02)00449-7
Vuletich, 2006, A phylogenetic and structural analysis of truncated hemoglobins, J. Mol. Evol., 62, 196, 10.1007/s00239-005-0077-4
Nardini, 2007, Protein fold and structure in the truncated (2/2) globin family, Gene, 398, 2, 10.1016/j.gene.2007.02.045
Nadra, 2008, Exploring the molecular basis of heme coordination in human neuroglobin, Proteins, 71, 695, 10.1002/prot.21814
Capece, 2009, High pressure reveals structural determinants for globin hexacoordination: neuroglobin and myoglobin cases, Proteins, 75, 885, 10.1002/prot.22297
Golden, 2008, Identification of ligand-binding pathways in truncated hemoglobins using locally enhanced sampling molecular dynamics, Methods Enzymol., 437, 459, 10.1016/S0076-6879(07)37023-7
Cazade, 2012, Oxygen migration pathways in NO-bound truncated hemoglobin, Chemphyschem, 13, 4276, 10.1002/cphc.201200608
Bidon-Chanal, 2006, Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N, Proteins, 64, 457, 10.1002/prot.21004
Savard, 2011, Structure and dynamics of Mycobacterium tuberculosis truncated hemoglobin N: insights from NMR spectroscopy and molecular dynamics simulations, Biochemistry, 50, 11121, 10.1021/bi201059a
Bocahut, 2011, Frontier residues lining globin internal cavities present specific mechanical properties, J. Am. Chem. Soc., 133, 8753, 10.1021/ja202587a
Milani, 2001, Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme, EMBO J., 20, 3902, 10.1093/emboj/20.15.3902
Imai, 2010, Dynamic correlation between pressure-induced protein structural transition and water penetration, J. Phys. Chem. B, 114, 2281, 10.1021/jp909701j
Perutz, 1965, Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence, J. Mol. Biol., 13, 669, 10.1016/S0022-2836(65)80134-6
Crooks, 2004, WebLogo: a sequence logo generator, Genome Res., 14, 1188, 10.1101/gr.849004
Landau, 2005, ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures, Nucleic Acids Res., 33, W299, 10.1093/nar/gki370