Volumetric properties underlying ligand binding in a monomeric hemoglobin: A high-pressure NMR study

Mariano Dellarole1, Christian Roumestand1, Catherine Royer1, Juliette T.J. Lecomte2
1Centre de Biochimie Structurale, CNRS, UMR 5048, Montpellier, France
2T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA

Tài liệu tham khảo

Kendrew, 1958, A three-dimensional model of the myoglobin molecule obtained by X-ray analysis, Nature, 181, 662, 10.1038/181662a0 Perutz, 1966, An X-ray study of azide methaemoglobin, J. Mol. Biol., 21, 199, 10.1016/0022-2836(66)90088-X Smith, 2010, Straight-chain alkyl isocyanides open the distal histidine gate in crystal structures of myoglobin, Biochemistry, 49, 4977, 10.1021/bi1001739 Scott, 2001, Mapping the pathways for O2 entry into and exit from myoglobin, J. Biol. Chem., 276, 5177, 10.1074/jbc.M008282200 Kakar, 2010, Structure and reactivity of hexacoordinate hemoglobins, Biophys. Chem., 152, 1, 10.1016/j.bpc.2010.08.008 Gardner, 2012, Hemoglobin, a nitric-oxide dioxygenase, Scientifica, 2012, 10.6064/2012/683729 Scott, 2002, The hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002: evidence for hexacoordination and covalent adduct formation in the ferric recombinant protein, Biochemistry, 41, 6902, 10.1021/bi025609m Scott, 2010, Functional and structural characterization of the 2/2 hemoglobin from Synechococcus sp. PCC 7002, Biochemistry, 49, 7000, 10.1021/bi100463d Pesce, 2000, A novel two-over-two α-helical sandwich fold is characteristic of the truncated hemoglobin family, EMBO J., 19, 2424, 10.1093/emboj/19.11.2424 Trent, 2004, Crystallographic analysis of synechocystis cyanoglobin reveals the structural changes accompanying ligand binding in a hexacoordinate hemoglobin, J. Mol. Biol., 341, 1097, 10.1016/j.jmb.2004.05.070 Wittenberg, 2002, Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants, J. Biol. Chem., 277, 871, 10.1074/jbc.R100058200 Milani, 2004, Heme-ligand tunneling in group I truncated hemoglobins, J. Biol. Chem., 279, 21520, 10.1074/jbc.M401320200 Cooper, 1976, Thermodynamic fluctuations in protein molecules, Proc. Natl. Acad. Sci. U. S. A., 73, 2740, 10.1073/pnas.73.8.2740 Vuletich, 2006, Structural and dynamic repercussions of heme binding and heme-protein cross-linking in Synechococcus sp. PCC 7002 hemoglobin, Biochemistry, 45, 14075, 10.1021/bi061532g Pond, 2009, 1H, 15N, and 13C resonance assignments of the 2/2 hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 in the ferric bis-histidine state, Biomol. NMR Assign., 3, 211, 10.1007/s12104-009-9177-1 Pond, 2012, Influence of heme post-translational modification and distal ligation on the backbone dynamics of a monomeric hemoglobin, Biochemistry, 51, 5733, 10.1021/bi300624a Sklenář, 1990, Selective excitation techniques for water suppression in one- and two-dimensional NMR spectroscopy, Basic Life Sci., 56, 63 Piotto, 1992, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions, J. Biomol. NMR, 2, 661, 10.1007/BF02192855 Stoven, 1989, PARIS, a program for automatic recognition and integration of 2D NMR signals, J. Magn. Reson., 82, 163 Pons, 1996, Gifa V. 4: a complete package for NMR data set processing, J. Biomol. NMR, 8, 445, 10.1007/BF00228146 Grzesiek, 1996, The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase, Nat. Struct. Biol., 3, 340, 10.1038/nsb0496-340 Li, 1998, Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor, Biochemistry, 37, 1167, 10.1021/bi972288j Kitahara, 2000, High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase, Biochemistry, 39, 12789, 10.1021/bi0009993 Kamatari, 2001, Response of native and denatured hen lysozyme to high pressure studied by 15N/1H NMR spectroscopy, Eur. J. Biochem., 268, 1782, 10.1046/j.1432-1327.2001.02050.x Kitahara, 2005, NMR snapshots of a fluctuating protein structure: ubiquitin at 30bar–3kbar, J. Mol. Biol., 347, 277, 10.1016/j.jmb.2005.01.052 Refaee, 2003, Pressure-dependent changes in the solution structure of hen egg-white lysozyme, J. Mol. Biol., 327, 857, 10.1016/S0022-2836(03)00209-2 Akasaka, 2001, Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR, Biochemistry, 40, 8665, 10.1021/bi010312u Kuwata, 2001, High pressure NMR reveals a variety of fluctuating conformers in β-lactoglobulin, J. Mol. Biol., 305, 1073, 10.1006/jmbi.2000.4350 Kamatari, 2011, Cavity hydration as a gateway to unfolding: an NMR study of hen lysozyme at high pressure and low temperature, Biophys. Chem., 156, 24, 10.1016/j.bpc.2011.01.009 Kitahara, 2013, Pressure-induced chemical shifts as probes for conformational fluctuations in proteins, Prog. Nucl. Magn. Reson. Spectrosc., 71, 35, 10.1016/j.pnmrs.2012.12.001 Preimesberger, 2012, Electron self-exchange and self-amplified posttranslational modification in the hemoglobins from Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, J. Biol. Inorg. Chem., 17, 599, 10.1007/s00775-012-0880-5 La Mar, 2000, Nuclear magnetic resonance of hemoproteins, vol. 5, 185 Schmitz, 2008, Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts, J. Biomol. NMR, 41, 179, 10.1007/s10858-008-9249-z Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2 Thompson, 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673 Schneider, 1990, Sequence logos: a new way to display consensus sequences, Nucleic Acids Res., 18, 6097, 10.1093/nar/18.20.6097 Perez-Bercoff, 2006, LogoBar: bar graph visualization of protein logos with gaps, Bioinformatics, 22, 112, 10.1093/bioinformatics/bti761 Ashkenazy, 2010, ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Res., 38, W529, 10.1093/nar/gkq399 Ash, 1965 Gouveia-Oliveira, 2009, InterMap3D: predicting and visualizing co-evolving protein residues, Bioinformatics, 25, 1963, 10.1093/bioinformatics/btp335 Tillier, 2003, Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments, Bioinformatics, 19, 750, 10.1093/bioinformatics/btg072 Akasaka, 1999, Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI, Protein Sci., 8, 1946, 10.1110/ps.8.10.1946 Sitkoff, 1998, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. Nucl. Mag. Res. Sp., 32, 165, 10.1016/S0079-6565(98)00013-2 Ho, 2008, HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures, BMC Struct. Biol., 8, 49, 10.1186/1472-6807-8-49 Dundas, 2006, CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues, Nucleic Acids Res., 34, W116, 10.1093/nar/gkl282 Weber, 1983, The effect of high pressure upon proteins and other biomolecules, Q. Rev. Biophys., 16, 89, 10.1017/S0033583500004935 Kim, 2006, High-pressure studies on protein aggregates and amyloid fibrils, Methods Enzymol., 413, 237, 10.1016/S0076-6879(06)13013-X Hummer, 1998, The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins, Proc. Natl. Acad. Sci. U. S. A., 95, 1552, 10.1073/pnas.95.4.1552 Paliwal, 2004, Pressure denaturation of staphylococcal nuclease studied by neutron small-angle scattering and molecular simulation, Biophys. J., 87, 3479, 10.1529/biophysj.104.050526 Collins, 2005, Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation, Proc. Natl. Acad. Sci. U. S. A., 102, 16668, 10.1073/pnas.0508224102 Royer, 2002, Revisiting volume changes in pressure-induced protein unfolding, Biochim. Biophys. Acta, 1595, 201, 10.1016/S0167-4838(01)00344-2 Neri, 1992, Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form, Proc. Natl. Acad. Sci. U. S. A., 89, 4397, 10.1073/pnas.89.10.4397 Roche, 2012, Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations, Biochemistry, 51, 9535, 10.1021/bi301071z Li, 2006, Conformational fluctuations of proteins revealed by variable pressure NMR, Biochim. Biophys. Acta, 1764, 331, 10.1016/j.bbapap.2005.12.014 Bertini, 1999, Heme methyl 1H chemical shifts as structural parameters in some low-spin ferriheme proteins, J. Biol. Inorg. Chem., 4, 515, 10.1007/s007750050337 Shelnutt, 1998, Nonplanar porphyrins and their significance in proteins, Chem. Soc. Rev., 27, 31, 10.1039/a827031z Milani, 2004, Cyanide binding to truncated hemoglobins: a crystallographic and kinetic study, Biochemistry, 43, 5213, 10.1021/bi049870+ Vu, 2004, Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin, Biochemistry, 43, 12622, 10.1021/bi048726l Vinogradov, 2005, Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life, Proc. Natl. Acad. Sci. U. S. A., 102, 11385, 10.1073/pnas.0502103102 Suel, 2003, Evolutionarily conserved networks of residues mediate allosteric communication in proteins, Nat. Struct. Biol., 10, 59, 10.1038/nsb881 Baussand, 2009, A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence, PLoS Comput. Biol., 5, e1000488, 10.1371/journal.pcbi.1000488 Morishima, 1980, High-pressure proton nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural change in heme environments of myoglobin, hemoglobin, and horseradish peroxidase, Biochemistry, 19, 1569, 10.1021/bi00549a006 Kitahara, 2003, High-pressure 1H NMR study of pressure-induced structural changes in the heme environments of metcyanomyoglobins, Protein Sci., 12, 207, 10.1110/ps.4620103 Kitahara, 2002, High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded, J. Mol. Biol., 320, 311, 10.1016/S0022-2836(02)00449-7 Vuletich, 2006, A phylogenetic and structural analysis of truncated hemoglobins, J. Mol. Evol., 62, 196, 10.1007/s00239-005-0077-4 Nardini, 2007, Protein fold and structure in the truncated (2/2) globin family, Gene, 398, 2, 10.1016/j.gene.2007.02.045 Nadra, 2008, Exploring the molecular basis of heme coordination in human neuroglobin, Proteins, 71, 695, 10.1002/prot.21814 Capece, 2009, High pressure reveals structural determinants for globin hexacoordination: neuroglobin and myoglobin cases, Proteins, 75, 885, 10.1002/prot.22297 Golden, 2008, Identification of ligand-binding pathways in truncated hemoglobins using locally enhanced sampling molecular dynamics, Methods Enzymol., 437, 459, 10.1016/S0076-6879(07)37023-7 Cazade, 2012, Oxygen migration pathways in NO-bound truncated hemoglobin, Chemphyschem, 13, 4276, 10.1002/cphc.201200608 Bidon-Chanal, 2006, Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N, Proteins, 64, 457, 10.1002/prot.21004 Savard, 2011, Structure and dynamics of Mycobacterium tuberculosis truncated hemoglobin N: insights from NMR spectroscopy and molecular dynamics simulations, Biochemistry, 50, 11121, 10.1021/bi201059a Bocahut, 2011, Frontier residues lining globin internal cavities present specific mechanical properties, J. Am. Chem. Soc., 133, 8753, 10.1021/ja202587a Milani, 2001, Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme, EMBO J., 20, 3902, 10.1093/emboj/20.15.3902 Imai, 2010, Dynamic correlation between pressure-induced protein structural transition and water penetration, J. Phys. Chem. B, 114, 2281, 10.1021/jp909701j Perutz, 1965, Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence, J. Mol. Biol., 13, 669, 10.1016/S0022-2836(65)80134-6 Crooks, 2004, WebLogo: a sequence logo generator, Genome Res., 14, 1188, 10.1101/gr.849004 Landau, 2005, ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures, Nucleic Acids Res., 33, W299, 10.1093/nar/gki370