Volume-Preserving Diffeomorphisms with the $$\mathcal {M}_0$$-Shadowing Properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alishah, H.N., Dias, J.L.: Realization of tangent perturbations in discrete and continuous time conservative systems. Discrete Contin. Dyn. Syst. 34, 5359–5374 (2014)
Anosov, D.: Geodesic flows on closed Riemannian manifolds of negative curvature. In: Proc. Steklov Inst., vol. 90. Amer. Math. Soc., Providence (1967)
Arbieto, A., Matheus, C.: A pasting lemma and some applications for conservative systems. Ergod. Theory Dyn. Syst. 27, 1399–1417 (2007)
Bessa, M.: Generic incompressible flows are topological mixing. C. R. Math. Acad. Sci. Paris 346, 1169–1174 (2008)
Bessa, M., Lee, M., Vaz, S.: Stable weakly shadowable volume-preserving systems are volume-hyperbolic. Acta Math. Sin. (Engl. Ser.) 30, 1007–1020 (2014)
Bessa, M., Ribeiro, R.: Conservative flows with various types of shadowing. Chaos Solit. Fractals 75, 243–252 (2015)
Bessa, M., Rocha, J.: On $$C^1$$-robust transitivity of volume-preserving flows. J. Differ. Equ. 245, 3127–3143 (2008)
Bessa, M., Rocha, J.: Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differ. Equ. 247, 2913–2923 (2009)
Bessa, M., Rocha, J.: Contributions to the geometric and ergodic theory of conservative flows. Ergod. Theory Dyn. Syst. 33, 1667–1708 (2013)
Bonatti, C., Díaz, L., Pujals, E.: A $$C^1$$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158, 187–222 (2003)
Bonatti, C., Gourmelon, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergod. Theory Dyn. Syst. 26, 1307–1337 (2006)
Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes. Math., vol. 470. Springer, New York (1975)
Bowen, R.: $$\omega $$-Limits sets for Axiom A diffeomorphisms. J. Differ. Equ. 18, 333–339 (1975)
Chow, S., Lin, X., Palmer, K.: A shadowing lemma with applications to semilinear parabolic equations. SIAM J. Math. Anal. 20, 547–557 (1989)
Franks, J.: Necessary conditions for stability of diffeomorphisms. Trans. Am. Math. Soc. 158, 301–308 (1971)
Grebogi, C., Hammel, S., Yorke, J.: Numerical orbits of chaotic processes represent true orbits. Bull. Am. Math. Soc. 19, 465–469 (1988)
Gu, R.: The asymptotic average shadowing property and transitivity. Nonlinear Anal. 67, 1680–1689 (2007)
Hayashi, S.: Diffeomorphisms in $$\cal{F}^1(m)$$ satisfy Axiom A. Ergod. Theory Dyn. Syst. 12, 233–253 (1992)
Honary, B., Bahabadi, A.Z.: Asymptotic average shadowing property on compact metric spaces. Nonlinear Anal. Theory Methods Appl. 69, 2857–2863 (2008)
Horita, V., Tahzibi, A.: Partial hyperbolicity for symplectic diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 641–661 (2006)
Lee, M.: Stably asymptotic average shadowing property and dominated splitting. Adv. Differ. Equ. 2012 (2012)
Lee, M., Wen, X.: Diffeomorphisms with $${C}^1$$-stably average shadowing. Acta Math. Sin. 29, 85–92 (2013)
Meyer, K.: An analytic proof of the shadowing lemma. Funkcialaj Ekvacioj 30, 127–133 (1987)
Meyer, K., Hall, G.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992)
Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math. 99, 1061–1087 (1975)
Pugh, C., Robinson, C.: The $$C^1$$ closing lemma, including Hamitonians. Ergod. Theory Dyn. Syst. 3, 261–313 (1983)
Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press, Florida (1999)
Sakai, K.: Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds. Rocky Mt. J. Math. 30, 1129–1137 (2000)
Wu, X.: Some remarks on d-shadowing property. Sci. Sin. Math. 45, 273–286 (2015). https://doi.org/10.1360/N012013-00171(in Chinese)
Wu, X., Oprocha, P., Chen, G.: On various definitions of shadowing with average error in tracing. Nonlinearity 29, 1942–1972 (2016)
Wu, X., Zhang, X., Ma, X.: Various shadowing in linear dynamical systems. Int. J. Bifurc. Chaos 29, 1950042 (2019)