Volume-Preserving Diffeomorphisms with the $$\mathcal {M}_0$$-Shadowing Properties

Mediterranean Journal of Mathematics - Tập 18 Số 2 - 2021
Xinxing Wu1, Zongben Xu2, Fu Sun3
1School of Sciences, Southwest Petroleum University, Chengdu, 610500, Sichuan, People’s Republic of China
2Department of Mathematics, Shandong University, Weihai, 264209, Shandong, People’s Republic of China
3School of Statistics, Qufu Normal University, Qufu, 273165, Shandong, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alishah, H.N., Dias, J.L.: Realization of tangent perturbations in discrete and continuous time conservative systems. Discrete Contin. Dyn. Syst. 34, 5359–5374 (2014)

Anosov, D.: Geodesic flows on closed Riemannian manifolds of negative curvature. In: Proc. Steklov Inst., vol. 90. Amer. Math. Soc., Providence (1967)

Arbieto, A., Matheus, C.: A pasting lemma and some applications for conservative systems. Ergod. Theory Dyn. Syst. 27, 1399–1417 (2007)

Bessa, M.: Generic incompressible flows are topological mixing. C. R. Math. Acad. Sci. Paris 346, 1169–1174 (2008)

Bessa, M., Lee, M., Vaz, S.: Stable weakly shadowable volume-preserving systems are volume-hyperbolic. Acta Math. Sin. (Engl. Ser.) 30, 1007–1020 (2014)

Bessa, M., Ribeiro, R.: Conservative flows with various types of shadowing. Chaos Solit. Fractals 75, 243–252 (2015)

Bessa, M., Rocha, J.: On $$C^1$$-robust transitivity of volume-preserving flows. J. Differ. Equ. 245, 3127–3143 (2008)

Bessa, M., Rocha, J.: Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differ. Equ. 247, 2913–2923 (2009)

Bessa, M., Rocha, J.: Contributions to the geometric and ergodic theory of conservative flows. Ergod. Theory Dyn. Syst. 33, 1667–1708 (2013)

Bonatti, C., Crovisier, S.: Récurrence et généricité. Invent. Math. 158, 33–104 (2004)

Bonatti, C., Díaz, L., Pujals, E.: A $$C^1$$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158, 187–222 (2003)

Bonatti, C., Gourmelon, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergod. Theory Dyn. Syst. 26, 1307–1337 (2006)

Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes. Math., vol. 470. Springer, New York (1975)

Bowen, R.: $$\omega $$-Limits sets for Axiom A diffeomorphisms. J. Differ. Equ. 18, 333–339 (1975)

Chow, S., Lin, X., Palmer, K.: A shadowing lemma with applications to semilinear parabolic equations. SIAM J. Math. Anal. 20, 547–557 (1989)

Dastjerdi, D.A., Hosseini, M.: Sub-shadowings. Nonlinear Anal. 72, 3759–3766 (2010)

Franks, J.: Necessary conditions for stability of diffeomorphisms. Trans. Am. Math. Soc. 158, 301–308 (1971)

Grebogi, C., Hammel, S., Yorke, J.: Numerical orbits of chaotic processes represent true orbits. Bull. Am. Math. Soc. 19, 465–469 (1988)

Gu, R.: The asymptotic average shadowing property and transitivity. Nonlinear Anal. 67, 1680–1689 (2007)

Hayashi, S.: Diffeomorphisms in $$\cal{F}^1(m)$$ satisfy Axiom A. Ergod. Theory Dyn. Syst. 12, 233–253 (1992)

Honary, B., Bahabadi, A.Z.: Asymptotic average shadowing property on compact metric spaces. Nonlinear Anal. Theory Methods Appl. 69, 2857–2863 (2008)

Horita, V., Tahzibi, A.: Partial hyperbolicity for symplectic diffeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 641–661 (2006)

Lee, M.: Stably asymptotic average shadowing property and dominated splitting. Adv. Differ. Equ. 2012 (2012)

Lee, M.: Symplectic diffeomorphisms with limit shadowing. Asian-Eur. J. Math. 10, 1750068 (2017)

Lee, M., Wen, X.: Diffeomorphisms with $${C}^1$$-stably average shadowing. Acta Math. Sin. 29, 85–92 (2013)

Mãné, R.: An ergodic closing lemma. Ann. Math. 116, 503–540 (1982)

Meyer, K.: An analytic proof of the shadowing lemma. Funkcialaj Ekvacioj 30, 127–133 (1987)

Meyer, K., Hall, G.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992)

Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math. 99, 1061–1087 (1975)

Pugh, C.: An improved closing lemma a general density theorem. Am. J. Math. 89, 1010–1021 (1967)

Pugh, C., Robinson, C.: The $$C^1$$ closing lemma, including Hamitonians. Ergod. Theory Dyn. Syst. 3, 261–313 (1983)

Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press, Florida (1999)

Sakai, K.: Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds. Rocky Mt. J. Math. 30, 1129–1137 (2000)

Sinai, Y.: Gibbs measures in ergodic theory. Russ. Math. Surv. 166, 21–69 (1972)

Vivier, T.: Projective hyperbolicity and fixed points. Ergod. Theory Dyn. Syst. 26, 923–936 (2006)

Wu, X.: Some remarks on d-shadowing property. Sci. Sin. Math. 45, 273–286 (2015). https://doi.org/10.1360/N012013-00171(in Chinese)

Wu, X., Oprocha, P., Chen, G.: On various definitions of shadowing with average error in tracing. Nonlinearity 29, 1942–1972 (2016)

Wu, X., Zhang, X., Ma, X.: Various shadowing in linear dynamical systems. Int. J. Bifurc. Chaos 29, 1950042 (2019)

Zhang, X., Wu, X.: Diffeomorphisms with the $$\cal{M}_0$$-shadowing property. Acta Math. Sin. Engl. Ser. 35, 1760–1770 (2019)