Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cảm biến paracetamol voltammetric sử dụng điện cực vàng được làm từ chip đĩa quang kỹ thuật số và được sửa đổi với vật liệu hybrid bao gồm ống nano carbon và hạt nanoparticle đồng
Tóm tắt
Một hợp chất gồm ống nano carbon (CNT) và hạt nanoparticle đồng (CuNPs) đã được chuẩn bị bằng phương pháp khử hóa học, và cấu trúc của nó được xác định bằng kính hiển vi quét điện tử, kính hiển vi truyền qua, phổ tán xạ năng lượng và phổ FT-IR. Hợp chất hybrid đã được lắng đọng trên bề mặt của một điện cực vàng dùng một lần được chế tạo từ một đĩa vàng quang kỹ thuật số thương mại bằng phương pháp rót giọt. Tính chất điện hóa của điện cực đã được sửa đổi được điều tra bằng voltammetry chu kỳ và voltammetry xung vi phân. Cảm biến cho thấy hoạt tính điện xúc tác xuất sắc đối với quá trình oxi hóa paracetamol (PA). Đồ thị hiệu chuẩn (với dòng điện thường được đo ở 0.41 V so với Ag/AgCl) là tuyến tính trong khoảng nồng độ từ 0.5 đến 80 μM, và giới hạn phát hiện thấp tới 10 nM. Cảm biến đã được áp dụng thành công để xác định PA trong mẫu nước bị nhiễm bẩn và mẫu viên thuốc, nơi nó cho tỷ lệ thu hồi từ 95.25 đến 100.5%.
Từ khóa
#cảm biến; paracetamol; ống nano carbon; hạt nanoparticle đồng; điện cực vàng; phương pháp khử hóa học; voltammetryTài liệu tham khảo
Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Reviews 12:250–275
Chu Q, Jiang L, Tian X, Ye J (2008) Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta 606:246–251
Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiodt FV, Ostapowicz G, Shakil AO, Lee WM (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372
Dong Y, Su M, Chen P, Sun H (2015) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182(5–6):1071–1077
Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and Waste water environments. Anal. Bioanal. Chem 387:1225–1234
Abirami G, Vetrichelvan T (2013) Simultaneous determination of Tolperisone and Paracetamol in pure and fixed dose combination by UV-Spectrophotometry. Inter. J. Pharm. Pharm Sci 5:488–492
Azodi-Deilami S, Najafabadi A, Hassani AE, Abdouss M, Kordestani D (2014) Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchimica Acta 181(15–16):1823–1832
Sultan MA, Maher HM, Alzoman NZ, Alshehri MM, Rizk MS, Elshahed MS, Olah LV (2013) Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide. J. Chromatogr. Sci 51:502–510
D’Souza OJ, Mascarenhas RJ, Thomas T, Basavaraja BM, Saxena AK, Mukhopadhyay K, Roy D (2015) Platinum decorated multi-walled carbon nanotubes/triton X-100 modified carbon paste electrode for the sensitive amperometric determination of paracetamol. J Electroanal Chem 739:49–57
Zhang Y, Luo L, Ding Y, Liu X, Qian Z (2010) Highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171(1–2):133–138
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14
Jacobs CB, Peairs MJ, BJ V (2010) Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127
Prakash S, Chakrabarty T, Singh AK, Shahi VK (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron 41:43–53
Wojtysiak S, Solla-Gullón J, Dłu˙ zewski P, Kudelski A (2014) Synthesisofcore–shell silver–platinum nanoparticles, improvingshellintegrity. Colloids Surf. A: Physicochem. Eng. Asp 441:178–183
Liu L, Xiao F, Li J, Wu W, Zhao F, Zeng B (2008) Platinum nanoparticles decorated multiwalled carbon nanotubes–ionic liquid composite film coated glassy carbon electrodes for sensitive determination of theophylline. Electroanalysis 20:1194–1199
Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. International journal of hydrogen energy 35:3249–3257
Wang Y, Wei W, Zeng J, Liu X, Zeng X (2008) Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 160(1–2):253–260
Fu Y, Zhang L, Chen G (2012) Preparation of a carbon nanotube-copper nanoparticle hybrid by chemical reduction for use in the electrochemical sensing of carbohydrates. CARB ON 50:2563–2570
Sawyer TD, Roberts JL (1974) Jr Experimental Electrochemistry for Chemists. John Willey & Sons, New York
Angnes L, Richter EM, Augelli MA, Kume GH (2000) Gold electrodes from record-able CDs. Anal. Chem 72:5503–5506
Wenn Y, Lin AJ, Chen HF, Jiao YZ, Yang HF (2013) From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection. Biosens Bioelectron 41:857–861
Shafei M, Honeychurch KC (2013) Voltammetric behavior of hydrogen peroxide at a silver electrode fabricated from a rewritable digital versatile disc (DVD) and its determination in water samples. Anal Methods 5:6631–6636
Mawhinney DB, Naumenko V, Kuznetsova A, Yates JTJ, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384
Bard AJ, Faulkner LR (2001) Electrochemical Methods. Fundamentals and Applications, Wiley, New York
Khaskhelia AR, Fischerb J, Barekb J, Vyskocil V, Sirajuddina BMI (2013) Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite–polystyrene composite film modified electrode. Electrochimica Acta 101:238–242
Kanga X, Wanga J, Wua H, Liua J, Aksayc IA, Lina Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759
EL Bouabi Y, Farahi A, Labjar N, El Hajjaji S, Bakasse M, El Mhammedi MA (2015) Square wave voltammetric determination of paracetamol at chitosan modified carbon paste electrode: Application in natural water samples, commercial tablets and human urines. Materials Science & Engineering C 58:70–78
Goyala RN, Guptaa VK, Chatterjeea S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B 149:252–258
Yin H, Shang K, Meng X, Ai S (2011) Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim Acta 175(1–2):39–46
Luo J, Cong J, Fang R, Fei X, Liu X (2014) One-pot synthesis of a graphene oxide coated with an imprinted sol-gel for use in electrochemical sensing of paracetamol. Microchim Acta 181(11–12):1257–1266
Liu X, Zhang X, Wang L, Wang Y (2014) A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Microchim Acta 181(11–12):1439–1446
Liu R, Zeng X, Liu J, Luo J, Zheng Y, Liu X (2016) A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbonnanotubes for simultaneous determination of dopamine and paracetamol. Microchim Acta 183(5):1543–1551
Airong M, Hongbo L, Dangqin J, Liangyun Y, Xiaoya H (2015) Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan-copper complex by self assembly technique. Talanta 144:252–257