Voltammetric determination of mercury(II)

TrAC Trends in Analytical Chemistry - Tập 51 - Trang 1-12 - 2013
Chao Gao1,2, Xing-Jiu Huang1
1Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
2Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China

Tài liệu tham khảo

El-Safty, 2012, Mercury-ion optical sensors, TrAC, Trends Anal. Chem., 38, 98, 10.1016/j.trac.2012.05.002 Streets, 2009, Projections of global mercury emissions in 2050, Environ. Sci. Technol., 43, 2983, 10.1021/es802474j Leopold, 2010, Methods for the determination and speciation of mercury in natural waters—A review, Anal. Chim. Acta, 663, 127, 10.1016/j.aca.2010.01.048 Aragay, 2011, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev., 111, 3433, 10.1021/cr100383r Kim, 2012, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev., 41, 3210, 10.1039/C1CS15245A Lin, 2011, Gold nanoparticle probes for the detection of mercury, lead and copper ions, Analyst, 136, 863, 10.1039/C0AN00652A Selid, 2009, Sensing mercury for biomedical and environmental monitoring, Sensors, 9, 5446, 10.3390/s90705446 Rassaei, 2011, Nanoparticles in electrochemical sensors for environmental monitoring, TrAC, Trends Anal. Chem., 30, 1704, 10.1016/j.trac.2011.05.009 Economou, 2010, Recent developments in on-line electrochemical stripping analysis—An overview of the last 12 years, Anal. Chim. Acta, 683, 38, 10.1016/j.aca.2010.10.017 Stozhko, 2008, Modified carbon-containing electrodes in stripping voltammetry of metals, J. Solid State Electrochem., 12, 1185, 10.1007/s10008-007-0472-4 Osteryoung, 1985, Square wave voltammetry, Anal. Chem., 57, 101A, 10.1021/ac00279a789 Blanco-López, 2004, Electrochemical sensors based on molecularly imprinted polymers, TrAC, Trends Anal. Chem., 23, 36, 10.1016/S0165-9936(04)00102-5 Wang, 2007 Brown, 2005, Analytical techniques for trace element analysis: an overview, TrAC, Trends Anal. Chem., 24, 266, 10.1016/j.trac.2004.11.010 Howell, 2003, Voltammetric in situ measurements of trace metals in coastal waters, TrAC, Trends Anal. Chem., 22, 828, 10.1016/S0165-9936(03)01203-2 Giacomino, 2008, Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode, Talanta, 75, 266 Okçu, 2008, Determination of mercury in table salt samples by on-line medium exchange anodic stripping voltammetry, Talanta, 75, 442, 10.1016/j.talanta.2007.11.044 Ordeig, 2006, Trace detection of mercury(II) using gold ultra-microelectrode arrays, Electroanalysis, 18, 573, 10.1002/elan.200503437 Huan, 2012, Spirally oriented Au microelectrode array sensor for detection of Hg II, Talanta, 94, 284, 10.1016/j.talanta.2012.03.041 Salaün, 2006, Voltammetric detection of mercury and copper in seawater using a gold microwire electrode, Anal. Chem., 78, 5052, 10.1021/ac060231+ Bernalte, 2011, Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes, Anal. Chim. Acta, 689, 60, 10.1016/j.aca.2011.01.042 Watson, 1999, Stripping analyses of mercury using gold electrodes: irreversible adsorption of mercury, Anal. Chem., 71, 3181, 10.1021/ac981312b Meucci, 2009, An optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry, Talanta, 77, 1143, 10.1016/j.talanta.2008.08.008 Chen, 2010, Microfabricated on-chip integrated Au-Ag-Au three-electrode system for in situ mercury ion determination, Analyst, 135, 1010, 10.1039/b924545f Ashrafi, 2011, Stripping voltammetric determination of mercury(II) at antimony-coated carbon paste electrode, Talanta, 85, 2700, 10.1016/j.talanta.2011.07.078 Toghill, 2010, Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis, Electroanalysis, 22, 1947, 10.1002/elan.201000072 Honeychurch, 2003, Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC, Trends Anal. Chem., 22, 456, 10.1016/S0165-9936(03)00703-9 Zejli, 2005, Voltammetric determination of trace mercury at a sonogel–carbon electrode modified with poly-3-methylthiophene, Talanta, 68, 79, 10.1016/j.talanta.2005.04.060 Wang, 2010, Langmuir–Blodgett film of p-tert-butylthiacalix [4] arene modified glassy carbon electrode as voltammetric sensor for the determination of Hg(II), Talanta, 80, 1198, 10.1016/j.talanta.2009.09.008 Fink, 2010, Thin functionalized films on cylindrical microelectrodes for electrochemical determination of Hg(II), J. Electroanal. Chem., 649, 153, 10.1016/j.jelechem.2010.02.026 Rahman, 2003, Characterization of an EDTA bonded conducting polymer modified electrode: Its application for the simultaneous determination of heavy metal ions, Anal. Chem., 75, 1123, 10.1021/ac0262917 Tamer, 2007, Voltammetric determination of mercury(II) at poly(3-hexylthiophene) film electrode. Effect of halide ions, Electroanalysis, 19, 2565, 10.1002/elan.200704013 Cheng, 2008, Polyviologen modified glassy carbon electrode employed for anodic stripping voltammetric determination of mercury(II), Electroanalysis, 20, 207, 10.1002/elan.200704041 Buica, 2009, Voltammetric sensing of mercury and copper cations at poly(EDTA-like) film modified electrode, Electroanalysis, 21, 77, 10.1002/elan.200804386 Sharma, 2012, Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse, TrAC, Trends Anal. Chem., 34, 59, 10.1016/j.trac.2011.11.005 Kimmel, 2011, Electrochemical sensors and biosensors, Anal. Chem., 84, 685, 10.1021/ac202878q Alizadeh, 2011, Application of an Hg2+ selective imprinted polymer as a new modifying agent for the preparation of a novel highly selective and sensitive electrochemical sensor for the determination of ultratrace mercury ions, Anal. Chim. Acta, 689, 52, 10.1016/j.aca.2011.01.036 Fu, 2011, Stripping voltammetric detection of mercury(II) based on a surface ion imprinting strategy in electropolymerized microporous poly(2-mercaptobenzothiazole) films modified glassy carbon electrode, Anal. Chim. Acta, 685, 21, 10.1016/j.aca.2010.11.020 Ono, 2004, Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions, Angew. Chem. Int. Ed., 43, 4300, 10.1002/anie.200454172 Han, 2009, A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II), Analyst, 134, 1857, 10.1039/b908457f Liu, 2009, Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination, Anal. Chem., 81, 5724, 10.1021/ac900527f Wu, 2010, Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA, Biosens. Bioelectron., 25, 1025, 10.1016/j.bios.2009.09.017 Wang, 2012, Electrochemical amplified detection of Hg2+ based on the supersandwich DNA structure, Analyst, 137, 2036, 10.1039/c2an35048c Wu, 2010, Polythymine oligonucleotide-modified gold electrode for voltammetric determination of mercury(II) in aqueous solution, Electroanalysis, 22, 479, 10.1002/elan.200900441 Belding, 2010, Nanoparticle-modified electrodes, Phys. Chem. Chem. Phys., 12, 11208, 10.1039/c0cp00233j Saei, 2013, Electrochemical biosensors for glucose based on metal nanoparticles, TrAC, Trends Anal. Chem., 42, 216, 10.1016/j.trac.2012.09.011 Abollino, 2008, Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode, Electroanalysis, 20, 75, 10.1002/elan.200704044 Abollino, 2012, Analytical applications of a nanoparticle-based sensor for the determination of mercury, Electroanalysis, 24, 727, 10.1002/elan.201100531 Safavi, 2011, Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury, Anal. Chim. Acta, 688, 43, 10.1016/j.aca.2010.12.001 Kong, 2009, An ultrasensitive electrochemical “turn-on” label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier, Chem. Commun., 5633, 10.1039/b911163h Miao, 2009, A novel electrochemical method to detect mercury (II) ions, Electrochem. Commun., 11, 1904, 10.1016/j.elecom.2009.08.013 Zhu, 2009, Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification, Anal. Chem., 81, 7660, 10.1021/ac9010809 Liu, 2010, Label-free electrochemical biosensor of mercury ions based on DNA strand displacement by thymine–Hg(II)–thymine complex, Electroanalysis, 22, 2110, 10.1002/elan.201000149 Jena, 2008, Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper, Anal. Chem., 80, 4836, 10.1021/ac071064w Giannetto, 2011, Composite PEDOT/Au nanoparticles modified electrodes for determination of mercury at trace levels by anodic stripping voltammetry, Electroanalysis, 23, 456, 10.1002/elan.201000469 Gong, 2010, Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode, Anal. Chem., 82, 567, 10.1021/ac901846a Gao, 2012, The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors, Nanoscale, 4, 1948, 10.1039/c2nr11757f Wanekaya, 2011, Applications of nanoscale carbon-based materials in heavy metal sensing and detection, Analyst, 136, 4383, 10.1039/c1an15574a Yáñez-Sedeño, 2010, Electrochemical sensing based on carbon nanotubes, TrAC, Trends Anal. Chem., 29, 939, 10.1016/j.trac.2010.06.006 Janegitz, 2011, Development of a carbon nanotubes paste electrode modified with crosslinked chitosan for cadmium(II) and mercury(II) determination, J. Electroanal. Chem., 660, 209, 10.1016/j.jelechem.2011.07.001 Kempegowda, 2012, Covalently modified multiwalled carbon nanotubes as a new voltammetric interface for the determination of mercury at picomolar level, Electrochem. Commun., 25, 83, 10.1016/j.elecom.2012.09.005 Xu, 2008, Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II), Electrochem. Commun., 10, 1839, 10.1016/j.elecom.2008.09.030 Fu, 2012, Electropolymerized surface ion imprinting films on a gold nanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode for electrochemical detection of trace mercury(II) in water, Anal. Chim. Acta, 720, 29, 10.1016/j.aca.2011.12.071 Chen, 2012, Graphene oxide: preparation, functionalization, and electrochemical applications, Chem. Rev., 112, 6027, 10.1021/cr300115g Shao, 2010, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis, 22, 1027, 10.1002/elan.200900571 Pumera, 2010, Graphene for electrochemical sensing and biosensing, TrAC, Trends Anal. Chem., 29, 954, 10.1016/j.trac.2010.05.011 Chen, 2010, Graphene-based materials in electrochemistry, Chem. Soc. Rev., 39, 3157, 10.1039/b923596e Brownson, 2010, Graphene electrochemistry: an overview of potential applications, Analyst, 135, 2768, 10.1039/c0an00590h Gong, 2010, Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II), Sens. Actuators B: Chem., 150, 491, 10.1016/j.snb.2010.09.014 Zhou, 2012, Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine, Analyst, 137, 305, 10.1039/C1AN15793K Zhou, 2013, A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+, Analyst, 138, 1091, 10.1039/c2an36405k Zhao, 2012, Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on a polypyrrole/reduced graphene oxide nanocomposite, Chem. Commun., 48, 2180, 10.1039/C1CC16735A Melde, 2008, Mesoporous silicate materials in sensing, Sensors, 8, 5202, 10.3390/s8085202 Cesarino, 2008, Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions, Talanta, 75, 15, 10.1016/j.talanta.2007.06.032 Cesarino, 2008, Thiol-functionalized silica thin film modified electrode in determination of mercury ions in natural water, Electroanalysis, 20, 2301, 10.1002/elan.200804325 Cesarino, 2010, Simultaneous determination of cadmium, lead, copper and mercury ions using organofunctionalized SBA-15 nanostructured silica modified graphite-polyurethane composite electrode, Electroanalysis, 22, 61, 10.1002/elan.200900167 Wei, 2011, High adsorptive [gamma]-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water, Chem. Commun., 47, 11062, 10.1039/c1cc14215a Fu, 2010, Three-dimensional gold micro-/nanopore arrays containing 2-mercaptobenzothiazole molecular adapters allow sensitive and selective stripping voltammetric determination of trace mercury (II), Electrochim. Acta, 56, 463, 10.1016/j.electacta.2010.09.025 Murray, 2010, Roses and raspberries, Anal. Chem., 82, 3405, 10.1021/ac100892f Leopold, 2009, Preconcentration techniques for the determination of mercury species in natural waters, TrAC, Trends Anal. Chem., 28, 426, 10.1016/j.trac.2009.02.004