Sự tồn tại độ trễ điện áp trong pin ion lithium do căng thẳng cơ học

Physical Chemistry Chemical Physics - Tập 18 Số 6 - Trang 4721-4727
Bo Lü1,2,3,4,5, Yicheng Song1,6,7,8,9, Qinglin Zhang3,10,11, Jie Pan3,10,11, Yang‐Tse Cheng3,10,11, Junqian Zhang1,6,7,8,9
1China
2Department of Chemical and Materials Engineering
3Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
4Shanghai 200072
5Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
6Department of Mechanics, Shanghai University, Shanghai 200444, China
7Shanghai 200444
8Shanghai Key Laboratory of Mechanics in Energy Engineering
9Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, China
10Lexington
11University of Kentucky

Tóm tắt

Vai trò quan trọng của lực căng cơ học trong hiện tượng độ trễ điện áp của pin ion lithium trong chu trình nạp-xả được nghiên cứu cả lý thuyết và thực nghiệm.

Từ khóa


Tài liệu tham khảo

Boukamp, 1981, J. Electrochem. Soc., 128, 725, 10.1149/1.2127495

Green, 2003, Electrochem. Solid-State Lett., 6, A75, 10.1149/1.1563094

Kasavajjula, 2007, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084

Baggetto, 2008, Adv. Funct. Mater., 18, 1057, 10.1002/adfm.200701245

Chan, 2008, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411

He, 2012, J. Power Sources, 216, 131, 10.1016/j.jpowsour.2012.04.105

Sethuraman, 2010, J. Electrochem. Soc., 157, A1253, 10.1149/1.3489378

Piper, 2013, J. Electrochem. Soc., 160, A77, 10.1149/2.064301jes

Verbrugge, 2015, J. Phys. Chem. C, 119, 5341, 10.1021/jp512585z

Pal, 2014, J. Power Sources, 246, 149, 10.1016/j.jpowsour.2013.06.089

Chockla, 2011, J. Am. Chem. Soc., 133, 20914, 10.1021/ja208232h

Ma, 2007, Adv. Mater., 19, 4067, 10.1002/adma.200700621

Obrovac, 2007, J. Electrochem. Soc., 154, A103, 10.1149/1.2402112

Bower, 2011, J. Mech. Phys. Solids, 59, 804, 10.1016/j.jmps.2011.01.003

Butler, 1924, Trans. Faraday Soc., 19, 729, 10.1039/TF9241900729

A. J. Bard and L. R.Faulkner, Electrochemical methods: fundamentals and applications, Wiley and Sons, Hoboken, 2nd edn, 2001

Jagannathan, 2014, J. Power Sources, 247, 667, 10.1016/j.jpowsour.2013.08.092

Zhang, 2010, J. Electrochem. Soc., 154, A910, 10.1149/1.2759840

Lee, 2015, J. Electrochem. Soc., 162, A1579, 10.1149/2.0821508jes

Wu, 2012, Nat. Nanotechnol., 7, 310, 10.1038/nnano.2012.35

Li, 2011, J. Electrochem. Soc., 158, A689, 10.1149/1.3574027

Deshpande, 2012, J. Electrochem. Soc., 159, A1730, 10.1149/2.049210jes

Sun, 2013, ACS Nano, 7, 2717, 10.1021/nn4001512

Zhao, 2012, Nano Lett., 12, 4397, 10.1021/nl302261w

Pan, 2015, Nano Energy, 13, 192, 10.1016/j.nanoen.2015.02.020

Kulova, 2007, J. Electroanal. Chem., 600, 217, 10.1016/j.jelechem.2006.07.002

Song, 2013, J. Phys. D: Appl. Phys., 46, 105307, 10.1088/0022-3727/46/10/105307

Parka, 2010, J. Power Sources, 195, 7904, 10.1016/j.jpowsour.2010.06.060

Dahn, 1995, Science, 270, 590, 10.1126/science.270.5236.590

Winter, 1998, Adv. Mater., 10, 725, 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

He, 2014, J. Power Sources, 248, 517, 10.1016/j.jpowsour.2013.09.118

Yang, 2012, J. Power Sources, 204, 168, 10.1016/j.jpowsour.2012.01.029

Mukhopadhyay, 2014, Prog. Mater. Sci., 63, 58, 10.1016/j.pmatsci.2014.02.001

Zinn, 2014, Phys. Status Solidi A, 221, 2650, 10.1002/pssa.201431303

Fan, 2013, Modell. Simul. Mater. Sci. Eng., 21, 074002, 10.1088/0965-0393/21/7/074002

Sethuraman, 2010, J. Power Sources, 195, 5062, 10.1016/j.jpowsour.2010.02.013

Zhao, 2011, J. Appl. Phys., 109, 016110, 10.1063/1.3525990

Wang, 2015, J. Chem. Phys., 143, 104703, 10.1063/1.4930856

Zhang, 2012, J. Power Sources, 209, 220, 10.1016/j.jpowsour.2012.02.104