Voltage-dependent channel formation by rods of helical polypeptides

Gianfranco Menestrina1, K.‐P. Voges2, Günther Jung2, G. Boheim1
1Department Zellphysiologie, Ruhr-Universität Bochum, Bochum, Federal Republic of Germany
2Institut für Organische Chemie, Universität Tübingen, Tübingen, Federal Republic of Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andersen, O.S., Muller, R.U. 1982. Monazomycin-induced single channels: I. Characterization of the elementary conductance events.J. Gen. Physiol. 80:403–426

Boheim, G. 1974. Statistical analysis of alamethicin channels in black lipid membranes.J. Membrane Biol. 19:277–303

Boheim, G., Hanke, W., Eibl, H. 1980. Lipid phase transition in planar bilayer membrane and its effect on carrier- and poremediated ion transport.Proc. Natl. Acad. Sci. USA 77:3403–3407

Boheim, G., Hanke, W., Jung, G. 1983. Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles.Biophys. Struct. Mechan. 9:181–191

Boheim, G., Hanke, W., Überschär, S., Eibl, H. 1982. Alamethicin pore formation in planar bilayers above and below lipid phase transition temperature.In: Transport in Biomembranes: Model Systems and Reconstitution. R. Antolini, et al., editors, pp. 135–143. Raven, New York

Boheim, G., Janko, K., Leibfritz, D., Ooka, T., König, W.A., Jung, G. 1976. Structural and membrane modifying properties of suzukacillin, a peptide atibiotic related to alamethicin. Part B: Pore formation in black lipid films.Biochim. Biophys. Acta 433:182–199

Boheim, G., Kolb, H.A. 1978. Analysis of the multi-pore system of alamethicin in a lipid membrane: I. Voltage-jump current-relaxation experiments.J. Membrane Biol. 38:99–150

Bosch, R. 1984. Röntgenstrukturanalysen und vergleichende Studies von Alamethicin-Segmenten mit β-Turns, 3 10 1 - und 3 10 ′ -, sowie α-Helices. Ph.D. Thesis. University of Tübingen, Tübingen

Bosch, R., Jung, G., Schmitt, H., Sheldrick, G.M., Winter, W. 1984. Peptide structures of the alamethicin sequence: The C-terminal α/310-helical nonapeptide and two pentapeptides with opposite 310-helicity.Angew. Chem. Int. Ed. Engl. 23:450–453

Bosch, R., Jung, G., Schmitt, H., Winter, W. 1985a. Crystal structure of the α-helical undecapeptide Boc-l-Ala-Aib-Ala-Aib-Ala-Glu(OBzl)-Ala-Aib-Ala-Aib-Ala-OMe.Biopolymers 24:961–978

Bosch, R., Jung, G., Schmitt, H., Winter, W. 1985b. Crystal structure of Boc-Leu-Aib-Pro-Val-Aib-Aib-Glu(OBzl)-Gln-Phl·H2O, the C-terminal nonapeptide of the voltage-dependent ionophore alamethicin.Biopolymers 24:979–999

Bosch, R., Jung, G., Winter, W. 1983. Structure of the 310-helical pentapeptide Boc-Aib-l-Ala-Aib-l-Ala-Aib-OMe ·2 H2O.Acta Crystallogr. Sect. C 39:776–778

Brückner, H., Graf, H., Bokel, M. 1984. Paracelsin: Characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active moldTrichoderma reesei. Part B.Experientia 40:1189–1197

Brückner, H., Jung, G. 1982. Synthesis ofl-Pro-Leu-Aib-Aib-Gln-Valol and proof of identity with the isolated C-terminal fragment of trichotoxin A40.Liebigs Ann. Chem. 1982:1677–1699

Brückner, H., König, W.A., Aydin, M., Jung, G. 1985. Trichotoxin A40. Purification by counter current distribution and sequencing of isolated fragments.Biochim. Biophys. Acta 827:51–62

Brückner, H., Nicholson, G.J., Jung, G., Kruse, K., König, W.A. 1980. Gas chromatographic determination of the configuration of isovaline in antiamoebin, samarosporin (emerimicin IV), stilbellin, suzukacillins and trichotoxins.Chromatographia 13:209–214

Brückner, H., Przybylski, M. 1984. Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by HPLC with FD and FAB mass spectrometry.J. Chromat. 296:263–275

Butters, T., Hütter, P., Jung, G., Pauls, N., Schmitt, H., Sheldrick, G.M., Winter, W. 1981. On the structure of the helical N-terminus in alamethicin-α-helix or 310-helix?Angew. Chem. Int. Ed. Engl. 20:889–890

Davis, P.J., Fleming, B.D., Coolbear, K.P., Keough, K.M.W. 1981. Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines.Biochemistry 20:3633–3636

Edmonds, D.T. 1980. Membrane ion channels and ionic hydration energies.Proc. R. Soc. London B 211:51–62

Eisenberg, M., Hall, J.E., Mead, C.A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes.J. Membrane Biol. 14:143–176

Finkelstein, A., Holz, R. 1973. Aqueous pores creasted in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.In: Membranes. Vol. 2. Lipid Bilayers and Antibiotics. G. Eisenman, editor, pp. 377–408. M. Dekker, New York

Fox, R.O., Richards, F.M. 1982. A voltage-gated ion channel model inferred from crystal structure of alamethicin at 1.5 Å resolution.Nature (London) 300:325–330

Gordon, L.G.M., Haydon, D.A. 1972. The unit conductance channel of alamethicin.Biochim. Biophys. Acta 255:1014–1018

Hall, J.E., Vodyanoy, I., Balasubramanian, T.M., Marshall, G.R. 1984. Alamethicin—A rich model for channel behavior.Biophys. J. 45:233–247

Hanke, W., Boheim, G. 1980. The lowest conductance state of the alamethicin pore.Biochim. Biophys. Acta 596:456–462

Hanke, W., Methfessel, C., Wilmsen, H.-U., Katz, E., Jung, G., Boheim, G. 1983. Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores.Biochim. Biophys. Acta 727:108–114

Heyer, E.J., Muller, R.U., Finkelstein, A. 1976. Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes: II. Inactivation produced by monazomycin transport through the membrane.J. Gen. Physiol. 67:731–748

Hol, W.G.J. 1985. The role of the α-helix dipole in protein function and structure.Prog. Biophys. Molec. Biol. 45:149–195

Hol, W.G.J., Duijnen, P.T. van, Berendsen, H.J.C. 1978. The α-helix dipole and the properties of proteins.Nature (London) 273:443–446

Hol, W.G.J., Halie, L.M., Sander, C. 1981. Dipoles of the α-helix and β-sheet: Their role in protein folding.Nature (London) 294:532–536

Jung, G., Becker, G., Schmitt, H., Voges, K.-P., Boheim, G., Griesbach, S. 1983a. Voltage-gated membrane pores are formed by a flip-flop of α-helical polypeptides.In: Peptides, Structure and Function. V.J. Hruby, and D.H. Rich, editors. pp. 491–494. Pierce Chemical Co., Rockford, Ill.

Jung, G., Bosch, R., Katz, E., Schmitt, H., Voges, K.-P., Winter, W. 1983b. Stabilizing effects of 2-methylalanine residues on β-turns and α-helices.Biopolymers 22:241–246

Jung, G., Dubischar, N., Leibfritz, D. 1975. Solvent and temperature induced conformational changes of alamethicin, a13C NMR and circular dichroism study.Eur. J. Biochem. 54:395–409

Jung, G., Katz, E., Schmitt, H., Voges, K.-P., Menestrina, G., Boheim, G. 1983c. Conformational requirements for the potential dependent pore formation of the peptide antibiotics alamethicin, suzukacillin and trichotoxin.In: Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 349–357. Elsevier, Amsterdam

Katz, E., Aydin, M., Lucht, N., König, W.A., Ooka, T., Jung, G. 1985. Sequence and conformation of suzukacillin A.Liebigs Ann. Chem. 1985:1041–1062

Kleinberg, M.E., Finkelstein, A. 1984. Single-length and double-length channels formed by nystatin in lipid bilayer membranes.J. Membrane Biol. 80:257–269

Marty, A., Finkelstein, A. 1975. Pores formed in lipid bilayer membranes by nystatin. Differences in its one-sided and two-sided action.J. Gen. Physiol. 65:515–526

Mathew, M.K., Balaram, P. 1983a. Alamethicin and related membrane channel forming polypeptides.Mol. Cell. Biochem. 50:47–65

Mathew, M.K., Balaram, P. 1983b. A dipole helix model for alamethicin and related transmembrane channels.FEBS Lett. 157:1–5

McIntosh, T.J., Ting-Beall, H.P., Zampighi, G. 1982. Alamethicin induced changes in lipid bilayer morphology.Biochim. Biophys. Acta 685:51–60

Montal, M., Mueller P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Natl. Acad. Sci. USA 69:3561–3566

Mueller, P. 1976. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.Horizons Biochem. Biophys. 2:230–284

Mueller, P., Rudin, D.O. 1968. Action potentials induced in bimolecular lipid membranes.Nature (London) 217:713–719

Muller, R.U., Andersen, O.S. 1982. Monazomycin-induced single channels. II. Origin of the voltage dependence of the macroscopic conductance.J. Gen. Physiol. 80:427–449

Muller, R.U., Finkelstein, A. 1972. Voltage-dependent conductance induced in thin lipid membranes by monazomycin.J. Gen. Physiol. 60:263–284

Nakayama, H., Furihata, K., Seto, H., Otake, N. 1981. Structure of monazomycin, a new ionophorous antibiotic.Tetrahedron Lett. 22:5217–5220

Rinehart, K.L., Cook, J.C., Meng, H., Olson, K.L., Pandey, R.C. 1977. Mass spectrometric determination of molecular formulas for membrane-modifying antibiotics.Nature (London) 269:832–833

Rizzo, V., Schwarz, G., Voges, K.-P., Jung, G. 1985. Molecular shape and dipole moment of alamethicin-like synthetic peptides.Eur. Biophys. J. 12:67–73

Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Butterworth, London

Roy, G. 1975. Properties of the conductance induced in lecithin bilayer membranes by alamethicin.J. Membrane Biol. 24:71–85

Schmitt, H., Jung, G. 1985a. Total synthesis of the α-helical eicosapeptide antibiotic alamethicin.Liebigs Ann. Chem. 1985:321–344

Schmitt, H., Jung, G. 1985b.13C NMR spectroscopic control of the synthesis of Alamethicin F30 and its segments.Liebigs Ann. Chem. 1985:345–364

Schmitt, H., Winter, W., Bosch, R., Jung, G. 1982. The α-helical conformation of the undecapeptide Boc-l-Ala-(Aib-Ala)2-Glu(OBzl)-Ala-(Aib-Ala)2-OMe: Synthesis, X-ray crystal structure, and conformation in solution.Liebigs Ann. Chem. 1982:1304–1321

Schwarz, G., Savko, P. 1982. Structural and dipolar properties of the voltage dependent pore former alamethicin in octanol/dioxane.Biophys. J. 39:211–219

Schwarz, G., Savko, P., Jung, G. 1983. Solvent dependent structural features of the membrane active peptide trichotoxin A40 as reflected in its dielectric dispersion.Biochim. Biophys. Acta 718:419–428

Spach, G., Trudelle, Y., Heitz, F. 1983. Peptides as channelmaking ionophores: Conformational aspects.Biopolymers 22:403–407

Urry, D.W., Bradley, R.J., Ohnishi, T. 1978. Characterization of a synthetic, voltage-dependent, cation-selective transmembrane channel.Nature (London) 274:382–383

Vodyanoy, I., Hall, J.E., Balasubramanian, T.M., Marshall, G.R. 1982. Two purified fractions of alamethicin have different conductance properties.Biochim. Biophys. Acta 684:53–58

Voges, K.-P. 1985. Zur Eintauchtiefe helikaler Tryptophanyl-Heneikosapeptide in Membranen: Synthese, NMR, CD und Fluoreszenz. Thesis, University of Tübingen, Tübingen

Yantorno, R.E., Takashima, S., Mueller, P. 1982. Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers.Biophys. J. 38:105–110