Volatility and VaR forecasting in the Madrid Stock Exchange
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andersen TG, Bollerslev T (1998) Answering the skeptics: yes, standard volatility models do provide accurate forecasts. Int Econ Rev 39:885–905
Arteche J (2004) Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. J Econom 119:131–154
Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73:5–59
Baillie RT, Bollerslev T, Mikkelsen H (1996) Fractionally integrated generalized autoregressive conditional heteroscedasticity. J Econom 74:3–30
Bauwens L, Laurent S, Rombouts JVK (2006) Multivariate GARCH models: a survey. J Appl Econom 21:79–109
Black F (1976) Studies of stock price volatility changes. In: Proceedings from the American statistical association. Business and economic statistics section, pp 177–181
Bollerslev T (1987) A conditional heteroskedastic time series model for speculative prices and rates of return. Rev Econ Stat 69:542–547
Bollerslev T, Mikkelsen H (1996) Modeling and pricing long memory in stock market volatility. J Econom 73:151–184
Bollerslev T, Mikkelsen H (1999) Long-term equity anticipation securities and stock market volatility dynamics. J Econom 92:75–99
Bollerslev T, Wooldridge JM (1992) Quasi-maximum likelihood estimation and inference in dynamics models with time-varying covariances. Econom Rev 11:143–172
Brailsford TJ, Faff RW (1996) An evaluation of volatility forecasting techniques. J Bank Finance 20:419–438
Breidt FJ, Crato N, De Lima P (1998) The detection and estimation of long memory in stochastic volatility. J Econom 83:325–348
Brooks C, Persand G (2003) The effect of asymmetries on stock index return value-at-risk estimates. J Risk Finance 4:29–42
Chung CF (1999) Estimating the fractionally integrated GARCH model. Manuscript. National Taiwan University, Taiwan
Conrad C, Haag BR (2006) Inequality constraints in the fractionally integrated GARCH model. J Financ Econom 4:413–449
Danielsson J, Shin H, Zigrand JP (2004) The impact of risk regulation on price dynamics. J Bank Finance 28:1069–1087
Davidson J (2004) Moment and memory properties of linear conditional heteroscedasticity models, and a new model. J Bus Econ Stat 22:16–29
Diebold FX, Inoue A (1999) Long memory and structural change. Manuscript. New York University, Stern School of Business, Department of Finance
Diebold FX, Mariano R (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–264
Diebold FX, Gunther TA, Tay SA (1998) Evaluating density forecasts with applications to financial risk management. Int Econ Rev 39:863–883
Ding Z, Granger CWJ (1996) Modeling volatility persistence of speculative returns: a new approach. J Econom 73:185–215
Ding Z, Granger CWJ, Engle RF (1993) A long memory property of stock market returns and a new model. J Empir Finance 1:83–106
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50:987–1008
Engle RF (2001) Garch 101: the use of ARCH/GARCH models in applied econometrics. J Econ Perspect 15:157–168
Engle RF, Lilien DM, Robins RP (1987) Estimating time varying risk premia in the term structure: the ARCH-M model. Econometrica 55:391–407
Engle RF, Manganelli S (2004) CAViaR: conditional value at risk by regression quantiles. J Bus Econ Stat 22:367–381
Ferreira MA, López JA (2005) Evaluating interest rate covariance models within a Value-at-Risk framework. J Financ Econom 3:126–168
Fiorentini G, Sentana E, Calzolari G (2003) Maximum likelihood estimation and inference in multivariate conditional heteroskedastic dynamic regression models with Student t innovations. J Bus Econ Stat 21:532–546
Giraitis L, Kokoszka P, Leipus R (2000) Stationary ARCH models: dependence structure and central limit theorem. Econom Theory 16:3–22
Glosten LR, Jagannathan R, Runkle D (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. J Finance 48:1779–1801
Gradshteyn IS, Ryzhnik IM (1980) Tables of integrals, series and products. Academic, New York
Hansen PR, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH(1,1)?. J Appl Econom 20:873–889
Hidalgo J (1997) Non-parametric estimation with strongly dependent multivariate time-series. J Time Ser Anal 18:95–122
Morgan JP (1996) RiskMetrics—technical document, 4th edn. Morgan Guaranty Trust Company, New York
Jorion P (2001) Value at risk: the new benchmark for controlling financial risk. McGraw-Hill, London
Komunjer I (2005) Quasi-maximum likelihood estimation for conditional quantiles. J Econom 128:137–164
León A, Mora J (1999) Modeling conditional heteroscedasticity: application to the IBEX 35 stock-return index. Span Econ Rev 3:215–238
Ling S, McAleer M (2002) Necessary and sufficient moment conditions for the GARCH(r, s) and asymmetric power GARCH(r, s) models. Econom Theory 18:722–729
Lobato IN, Savin NE (1998) Real and spurious long memory properties of stock market data. J Bus Econ Stat 16:261–268
López JA (1999) Methods for evaluating value-at-Risk estimates. Federal Reserve Bank of San Francisco Economic Review, vol 2, pp 3–17
López JA, Walter CA (2001) Evaluating covariance matrix forecasts in a value-at-risk framework. J Risk 3:69–98
Lucas A (2000) A note on optimal estimation from a risk-management perspective under possibly misspecified tail behavior. J Bus Econ Stat 18:31–39
Mármol F, Reboredo JC (2000) Dependencia temporal en la volatilidad estocástica. Una aplicación al índice IBEX 35. Centro de Investigación Económica y Financiera Working Paper no. 4. Fundación Caixa Galicia
Mincer J, Zarnowitz V (1969) The evaluation of economic forecasts. In: Mincer J (ed) Economic forecasts and expectations. NBER, New York
Morana C, Beltratti A (2004) Structural change and long-range dependence in volatility of exchange rates: either, neither or both? J Empir Finance 11:629–658
Muller UA, Dacorogna MM, Davé RD, Olsen RB, Pictet OV, von Weizsacker JE (1997) Volatilites of different times resolutions—analyzing the dynamics of markets components. J Empir Finance 4:213–239
Nelson CR (1976) Applied time series analysis. Holden-Day, San Francisco
Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:347–370
Newey W, West K (1987) A simple positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix. Econometrica 55:703–708
Newey W, Steigerwald D (1997) Asymptotic bias for quai-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica 65:587–599
Ñíguez TM, Rubia A (2006) Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence. J Forecast 25:439–458
Perron PY, Ng S (1996) Useful modifications to some unit-root tests with dependent errors and their local asymptotic properties. Rev Econ Stud 63:435–463
Ryden T, Teräsvirta T, Asbrink S (1998) Stylized facts of daily returns series and the hidden Markov model. J Appl Econom 13:217–244
Sentana E, Wadhwani S (1992) Feedback traders and stock return autocorrelations: evidence from a century of daily data. Econ J 102:415–425
Straumann D, Mikosch T (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Ann Stat 34:2449–2495
Tse YK (1998) The conditional heteroscedasticity of the yen-dollar exchange rate. J Appl Econom 13:49–55
White H (1994) Estimation, inference and specification analysis. Cambridge University Press, Cambridge