Volatile organic compounds emitted by Trichoderma species mediate plant growth
Tóm tắt
Từ khóa
Tài liệu tham khảo
Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787–99.
Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M. Trichoderma in agriculture, industry and medicine: an overview. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma biology and applications. Boston: CAB International; 2013. p. 1–9.
Hoitink HAJ, Madden LV, Dorrance AE. Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology. 2006;96:186–9.
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci. 2012. doi: 10.3389/fpls.2012.00108 .
Howell CR. The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP, editors. Trichoderma and Gliocladium, vol. 2. London: Taylor and Francis; 1998. p. 173–84.
Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 2009;149:1579–92.
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56.
Szabo M, Csepregi K, Galber M, Fekete C. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control. 2012;63:121–8.
Singh PC, Nautiyal CS. A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application. J Appl Microbiol. 2012;113:1442–50.
Gillespie AT, Moorhouse ER. The use of fungi to control pests of agricultural and horticultural importance. In: Whipps JM, Lumsden RD, editors. Biotechnology of fungi for improving plant growth. London: Cambridge University Press; 1989. p. 55–84.
Mendoza-Mendoza A, Steyaert J, Nieto-Jacobo MF, Holyoake A, Braithwaite M, Stewart A. Identification of growth stage molecular markers in Trichoderma sp. ‘atroviride type B’ and their potential application in monitoring fungal growth and development in soil. Microbiology. 2015;161:2110–26.
Chaparro AP, Carvajal LH, Orduz S. Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agric Sci. 2011;2:301–7.
Mathivanan N, Prabavathy VR, Vijayanandraj VR. The effect of fungal secondary metabolites on bacterial and fungal pathogens. In: Karlovsky P, editor. Secondary metabolites in soil ecology. Berlin: Springer-Verlag; 2008. p. 129–40.
Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma—a genomic perspective. Microbiology. 2012;158:35–45.
Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 2001;125:369–77.
Insam H, Seewald SA. Volatile organic compounds (VOCs) in soils. Biol Fertil Soils. 2010;46:199–213.
Korpi A, Jarnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39:139–93.
Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. VOC: a database of microbial volatiles. Nucleic Acids Res. 2014;42:744–8.
Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem. 1999;33:23–88.
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198:16–32.
Collins RP, Halim AF. Characterization of the major aroma constituent of the fungus Trichoderma viride (Pers.). J Agric Food Chem. 1972;20:437–738.
Parker SR, Hill RA, Cutler HG. Spectrum of activity of antifungal natural products and their analogs. In: Cutler HG, Cutler SJ, editors. Biologically active natural products: agrochemicals. Boca Raton: CRC Press; 1999. p. 175–83.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma-plant pathogens interactions. Soil Biol Biochem. 2008;40:1–10.
Hung R, Lee S, Bennett JW. Arabidopsis thaliana as a model system for testing the effects of Trichoderma volatile organic compounds. Fungal Ecol. 2013;6:19–26.
Lee S, Hung R, Yap M, Bennett JW. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol. 2015;197:723–7.
Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Nat Prod Rep. 2007;24:814–42.
Piechulla B, Degenhardt J. The emerging importance of microbial volatile organic compounds. Plant Cell Environ. 2014;37:811–2.
Bitas V, Kim H-S, Bennett JW, Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact J. 2013;4:835–43.
Junker RR, Tholl D. Volatile organic compound mediated interactions at the plant–microbe interface. J Chem Ecol. 2013;39:810–25.
Wheatley R, Hackett C, Bruce A, Kundzewicz A. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad. 1997;39:199–205.
Bruce A, Wheatley RE, Humphris SN, Hackett CA, Florence MEJ. Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung. 2000;54:481–6.
Aguero LEM, Alvarado R, Martinez A, Dorta B. Inhibition of Aspergillus flavus growth and aflatoxin B1 production in stored maize grains exposed to volatile compounds of Trichoderma harzianum Rifai. Interciencia. 2008;33:219–22.
Campos VP, Pinho RSC, de Freire ES. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciencia e Agrotec Lavras. 2010;34:525–35.
Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Pare PW, Kloepper JW. Bacterial volatiles promote growth of Arabidopsis. Proc Nat Acad Sci. 2003;100:4927–32.
Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepeer JW, Pare PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004;134:1017–26.
Cortes-Barco AM, Goodwin PH, Hsiang T. Comparison of induced resistance activated by benzothiadiazole, (2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 2010;59:643–53.
Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol. 2011;13:3047–58.
Kai M, Piechulla B. Plant growth promotion due to rhizobacterial volatiles—an effect of CO2? FEBS Lett. 2009;583:3473–7.
Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1–4.
Xie X, Zhang H, Paré PW. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav. 2009;4:948–53.
Bailly A, Weisskopf L. The modulating effect of bacterial volatiles on plant growth. Plant Signal Behav. 2012;7:79–85.
McNeal KS, Herbert BE. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci Soc Am J. 2009;73:579–88.
Polizzi V, Adams A, Picco AM, Adriaens E, Lenoir J, Peteghem CV, Saegar SD, Kimpe ND. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with sick building syndrome. Build Environ. 2011;46:945–54.
Hung R, Lee S, Bennett JW. Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol. 2015;99:3395–405.
Pasanen P, Korpi A, Kalliokosi P, Pasanen AL. Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int. 1997;23:425–32.
Fiedler K, Schutz E, Geh S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health. 2001;204:111–21.
Jelen H, Blaszczyk L, Jerzy C, Rogowicz K, Strakowska J. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog. 2014;13:589–600.
Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. 2007;175:417–24.
Pierik R, Mommer L, Voesenek LACJ. Molecular mechanisms of plant competition: neighbor detection and response strategies. Funct Ecol. 2013;27:841–53.
Blande JD, Holopainen JK, Niinemets Ü. Plant volatiles in a polluted atmosphere: stress response and signal degradation. Plant Cell Environ. 2014;37:1892–904.
Cardoza YJ, Alborn HT, Tumlinson JH. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol. 2002;28:161–74.
Tabata J, De Moraes CM, Hescher MC. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle. PLoS One. 2011;6(8):e23799. doi: 10.1371/journal.pone.0023799 .
Mohanta TK, Occhipinti A, Atsbaha Zebelo S, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS One. 2012;7:e32822. doi: 10.1371/journal.pone.0032822 .
Snoeren TAL, Kappers IF, Broekgaarden C, Mumm R, Dicke M, Bouwmeester HJ. Natural variation of herbivore-induced volatiles in Arabidopsis thaliana. J Exp Bot. 2010;61:3041–56.
Cai L, Koziel JA, O’Neal ME. Studying plant–insect interactions with solid phase microextraction: screening for airborne volatile emissions response of soybeans to the soybean aphid, Aphis glycines Matsumura (Hemiptera:Aphididae). Chromatography. 2015;2:265–76.
Joutsensaari J, Yli-Pirila P, Korhonen H, Arola A, Blande JD, Heijari J, Kivimaenpaa M, Mikkonen S, Hao L, Miettinen P, Lyytikainen-Saarenmaa P, Faiola CL, Laaksonen A, Holopainen JK. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests. Atmos Chem Phys. 2015;15:12139–57.
Llorens E, Camañes G, Lapeña L, García-Agustín P. Priming by hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles. Front Plant Sci. 2016;7:495.
Reisenman CE, Riffell JA, Duffy K, Pesque A, Mikles D, Goodwin B. Species-specific effects of herbivory on the oviposition behavior of the moth Manduca sexta. J Chem Ecol. 2012;39:76–89.
Jardine KJ, Meyers K, Abrell L, Alves EG, Yanez Serrano AM, Kesselmeier J, Karl T, Guenther A, Chambers JQ, Vickers C. Emissions of putative isoprene oxidation products from mango branches under abiotic stress. J Exp Bot. 2013;64:3697–708.
Tanaka K, Taniguchi S, Tamaoki D, Yoshitomi K, Akimitsu K, Gomi K. Multiple roles of plant volatiles in jasmonate-induced defense response in rice. Plant Signal Behav. 2014;9:e29247.