Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors

Nano Energy - Tập 59 - Trang 399-411 - 2019
Se-Yun Kim1, Dae-Ho Son1, Young-Ill Kim1, Seung-Hyun Kim1, Sammi Kim1, Kwangseok Ahn1, Shi-Joon Sung1, Dae-Kue Hwang1, Kee-Jeong Yang1, Jin-Kyu Kang1, Dae-Hwan Kim1
1Convergence Research Center for Solar Energy, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea

Tài liệu tham khảo

Mitzi, 2011, Sol. Energy Mater. Sol. Cells, 95, 1421, 10.1016/j.solmat.2010.11.028 Lee, 2017, Renew. Sustain. Energy Rev., 70, 1286, 10.1016/j.rser.2016.12.028 Best Research-Cell Efficiencies chart in the US Department of Energy’s National Renewable Energy Laboratory. 〈www.nrel.gov.ncpv/〉. Babayigit, 2016, Nat. Mater., 15, 247, 10.1038/nmat4572 Noh, 2013, Nano Lett., 13, 1764, 10.1021/nl400349b Hoke, 2015, Chem. Sci., 6, 613, 10.1039/C4SC03141E Green, 2018, Prog. Photovolt., 26, 3, 10.1002/pip.2978 Wang, 2014, Adv. Energy Mater., 4, 1301465, 10.1002/aenm.201301465 S. Das, K.C. Mandal, R.N. Bhattacharya, Springer, ISBN 978-3-319-20331-7, 2016. Yang, 2016, J. Mater. Chem. A, 4, 10151, 10.1039/C6TA01558A Fairbrother, 2013, Sol. Energy Mater. Sol. Cells, 112, 97, 10.1016/j.solmat.2013.01.015 Jung, 2017, Sol. Energy, 145, 2, 10.1016/j.solener.2016.09.043 Li, 2014, Nanotechnology, 25, 195701, 10.1088/0957-4484/25/19/195701 Gang, 2016, Green Chem., 18, 700, 10.1039/C5GC02417J Brammertz, 2013, J. Appl. Phys. Lett., 103, 163904, 10.1063/1.4826448 Li, 2017, Sol. Energy Mater. Sol. Cells, 159, 447, 10.1016/j.solmat.2016.09.034 Son, 2015, Chem. Mater., 27, 5180, 10.1021/acs.chemmater.5b01181 Li, 2014, Mater. Lett., 130, 87, 10.1016/j.matlet.2014.05.089 H. Hiroi, N. Sakai, T. Kato, H. Sugimoto, in: Proceedings of the IEEE Proceedings of the 39th Photovoltaic Specialists Conference (PVSC), 2013, pp. 0863–0866. Chalapathy, 2011, Sol. Energy Mater. Sol. Cells, 95, 3216, 10.1016/j.solmat.2011.07.017 Zhuk, 2017, Sol. Energy Mater. Sol. Cells, 171, 239, 10.1016/j.solmat.2017.05.064 Schurr, 2009, Thin Solid Films, 517, 2465, 10.1016/j.tsf.2008.11.019 Berg, 2014, Thin Solid Films, 573, 148, 10.1016/j.tsf.2014.11.012 Yoo, 2015, Thin Solid Films, 582, 245, 10.1016/j.tsf.2014.08.048 Wibowo, 2013, Mater. Chem. Phys., 142, 311, 10.1016/j.matchemphys.2013.07.021 Yoo, 2013, Thin Solid Films, 535, 73, 10.1016/j.tsf.2013.01.054 Su, 2015, Sci. Rep., 5, 9291, 10.1038/srep09291 Li, 2015, J. Alloy. Compd., 632, 178, 10.1016/j.jallcom.2015.01.205 Yoo, 2016 Scragg, 2012, J. Am. Chem. Soc., 134, 19330, 10.1021/ja308862n Scragg, 2013, Chem. Mater., 25, 3162, 10.1021/cm4015223 Scragg, 2011, Chem. Mater., 23, 4625, 10.1021/cm202379s Scragg, 2011 Kaur, 2017, J. Mater. Chem. A, 5, 3069, 10.1039/C6TA10543B Fürtauer, 2013, Intermetallics, 34, 142, 10.1016/j.intermet.2012.10.004 Copper Development Association (CDA), Equilibrium Diagrams of Copper Alloys, Copper Development Association, London, UK, 1963. Glazov, 2000, Inorg. Mater., 36, 641, 10.1007/BF02758413 Berger, 1973, Inorg. Mater., 9, 201 G. Effenberg, S. Ilyenko, Springer, ISBN 978-3-540-32589-5, 2006, 361–373.