Voice Discrimination by Adults with Cochlear Implants: the Benefits of Early Implantation for Vocal-Tract Length Perception

Yael Zaltz1, Raymond L. Goldsworthy2, Liat Kishon‐Rabin1, Laurie S. Eisenberg2
1Department of Communication Disorders, Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
2USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery Keck School of Medicine, University of Southern California, Los Angeles, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barone P, Lacassagne L, Kral A (2013) Reorganization of the connectivity of cortical field DZ in congenitally deaf cat. PLoS One 8(4):e60093. https://doi.org/10.1371/journal.pone.0060093

Baskent D, Gaudrain E (2016) Musicians advantage for speech-on-speech perception. J Acoust Soc Am 139(3):EL51–EL56. https://doi.org/10.1121/1.4942628

Belin P, Fecteau S, Bedard C (2004) Thinking the voice: neural correlates of voice perception. Trends Cogn Sci 8(3):129–135. https://doi.org/10.1016/j.tics.2004.01.008

Blauert J (1997) Spatial hearing: the psychophysics of human spatial localization. MIT Press, Cambridge

Boothroyd A (1968) Statistical theory of the speech discrimination score. J Acoust Soc Am 43(2):362–367. https://doi.org/10.1121/1.1910787

Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi-talker speech. Atten Percept Psychophys 77(5):1465–1487. https://doi.org/10.3758/s13414-015-0882-9

Chatterjee M, Peng SC (2008) Processing F0 with cochlear implants: modulation frequency discrimination and speech intonation recognition. Hear Res 235(1-2):143–156. https://doi.org/10.1016/j.heares.2007.11.004

Chuenwattanapranithi S, Xu Y, Thipakorn B, Maneewongvatana S (2008) Encoding emotions in speech with the size code. A perceptual investigation. Phonetica 65(4):210–230. https://doi.org/10.1159/000192793

Coez A, Zilbovicius M, Ferrary E, Bouccara D, Mosnier I, Ambert-Dahan E, Bizaguet E, Syrota A, Samson Y, Sterkers O (2008) Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations. J Nucl Med 49(1):60–67. https://doi.org/10.2967/jnumed.107.044545

Conway CM, Pisoni DB, Kronenberger WG (2009) The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Curr Dir Psychol Sci 18(5):275–279. https://doi.org/10.1111/j.1467-8721.2009.01651.x

Cullington HE, Zeng FG (2011) Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification. Ear Hear 32(1):16–30. https://doi.org/10.1097/AUD.0b013e3181edfbd2

Darwin CJ, Brungart DS, Simpson BD (2003) Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. J Acoust Soc Am 114(5):2913–2922. https://doi.org/10.1121/1.1616924

Dinse HR, Reuter G, Cords SM, Godde B, Hilger T, Lenarz T (1997) Optical imaging of cat auditory cortical organization after electrical stimulation of a multichannel cochlear implant: differential effects of acute and chronic stimulation. Am J Otol 8(Suppl):S17–S18

Donaldson GS, Nelson DA (2000) Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies. J Acoust Soc Am 107(3):1645–1658. https://doi.org/10.1121/1.428449

Fallon JB, Irvine DR, Shepherd RK (2009) Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats. J Comp Neurol 512(1):101–114. https://doi.org/10.1002/cne.21886

Fallon JB, Shepherd RK, Nayagam DA, Wise AK, Heffer LF, Landry TG, Irvine DR (2014a) Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex. Hear Res 315:1–9. https://doi.org/10.1016/j.heares.2014.06.001.

Fallon JB, Shepherd RK, Irvine DR (2014b) Effects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats. Eur J Neurosci 39(5):811–820. https://doi.org/10.1111/ejn.12445

Figueras B, Edwards L, Langdon D (2008) Executive function and language in deaf children. J Deaf Stud Deaf Educ 13(3):362–377. https://doi.org/10.1093/deafed/enm067

Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110(2):1150–1163. https://doi.org/10.1121/1.1381538

Fu QJ, Shannon RV, Wang X (1998) Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:3586–3596

Fu QJ, Chinchilla S, Galvin JJ 3rd (2004) The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users. J Assoc Res Otolaryngol 5:253–260

Fu QJ, Chinchilla S, Nogaki G, Galvin JJ 3rd (2005) Voice gender identification by cochlear implant users: the role of spectral and temporal resolution. J Acoust Soc Am 118:1711–1718

Fuller C, Gaudrain E, Clarke J, Galvin JJ 3rd, Fu QJ, Free R, Baskent D (2014) Gender categorization is abnormal in cochlear implant users. J Assoc Res Otolaryngol 15: 1037–1048. https://doi.org/10.1007/s10162-014-0483-7 , 6

Galantucci B, Fowler CA, Turvey MT (2006) The motor theory of speech perception reviewed. Psychon Bull Rev 13(3):361–377. https://doi.org/10.3758/BF03193857

Gaudrain E, Başkent D (2015) Factors limiting vocal-tract length discrimination in cochlear implant simulations. J Acoust Soc Am 137(3):1298–1308. https://doi.org/10.1121/1.4908235

Goldsworthy RL, Delhorne LA, Braida LD, Reed CM (2013) Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners. Trends Amplif 17(1):27–44. https://doi.org/10.1177/1084713813477244

Gordon KA, Papsin BC, Harrison RV (2005) Effects of cochlear implant use on the electrically evoked middle latency response in children. Hear Res 204(1-2):78–89. https://doi.org/10.1016/j.heares.2005.01.003

Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5(11):887–892. https://doi.org/10.1038/nrn1538

Han D, Liu B, Zhou N, Chen X, Kong Y, Liu H, Zheng Y, Xu L (2009) Lexical tone perception with HiResolution and HiResolution 120 sound-processing strategies in pediatric Mandarin-speaking cochlear implant users. Ear Hear 30(2):169–177. https://doi.org/10.1097/AUD.0b013e31819342cf

Henry BA, Turner CW, Behrens A (2005) Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners. J Acoust Soc Am 118(2):1111–1121. https://doi.org/10.1121/1.1944567

Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178. https://doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z

Jones GL, Won JH, Drennan WR, Rubinstein JT (2013) Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users. J Acoust Soc Am 133(1):425–433. https://doi.org/10.1121/1.4768881

Kania RE, Hartl DM, Hans S, Maeda S, Vaissiere J, Brasnu DF (2006) Fundamental frequency histograms measured by electroglottography during speech: a pilot study for standardization. J Voice 20(1):18–24. https://doi.org/10.1016/j.jvoice.2005.01.004

Kishon-Rabin L, Patael S, Menahemi M, Amir N (2004) Are the perceptual effects of spectral smearing influenced by speaker gender? J Basic Clin Physiol Pharmacol 15:41–55

Kollemeier MA (2015) Overcoming language barriers: Matrix sentence tests with closed speech corpora. Int J Audiol 54(Suppl 2):1–2. https://doi.org/10.3109/14992027.2015.1074295

Kopelovich JC, Eisen MD, Franck KH (2010) Frequency and electrode discrimination in children with cochlear implants. Hear Res 268(1-2):105–113. https://doi.org/10.1016/j.heares.2010.05.006

Kovačić D, Balaban E (2010) Hearing history influences voice gender perceptual performance in cochlear implant users. Ear Hear 31(6):806–814. https://doi.org/10.1097/AUD.0b013e3181ee6b64

Kral A (2013) Auditory critical periods: a review from system’s perspective. Neuroscience 247:117–133. https://doi.org/10.1016/j.neuroscience.2013.05.021

Kral A, Tillein J (2006) Brain plasticity under cochlear implant stimulation. Adv Otorhinolaryngol 64:89–108. https://doi.org/10.1159/000094647

Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12(8):797–807. https://doi.org/10.1093/cercor/12.8.797

Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15(5):552–562. https://doi.org/10.1093/cercor/bhh156

Kronenberger WG, Pisoni DB, Henning SC, Colson BG (2013) Executive functioning skills in long-term users of cochlear implants: a case control study. J Pediatr Psychol 38(8):902–914. https://doi.org/10.1093/jpepsy/jst034

Laneau J, Wouters J (2004) Mutichannel place pitch sensitivity in cochlear implant recipients. J Assoc Res Otolaryngol 5:285–294

Laneau J, Wouters J, Moonen M (2004) Relative contributions of temporal and place pitch cues to fundamental frequency discrimination in cochlear implantees. J Acoust Soc Am 116(6):3606–3619. https://doi.org/10.1121/1.1823311

Laneau J, Wouters J, Moonen M (2006) Improved music perception with explicit pitch coding in cochlear implants. Audiol Neurootol 11:38–52

Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49(2B):467–477. https://doi.org/10.1121/1.1912375

Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21(1):1–36. https://doi.org/10.1016/0010-0277(85)90021-6

Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74(6):431–461. https://doi.org/10.1037/h0020279

Luo X, QJ F, Galvin JJ 3rd (2007) Vocal emotion recognition by normal-hearing listeners and cochlear implant users. Trends Amplif 11(4):301–315. https://doi.org/10.1177/1084713807305301

Luo X, Fu QJ, Wei CG, Cao KL (2008) Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users. Ear Hear 29:957–70. https://doi.org/10.1097/AUD.0b013e3181888f61

Luo X, Padilla M, Landsberger DM (2012) Pitch contour identification with combined place and temporal cues using cochlear implants. J Acoust Soc Am 131(2):1325–1336. https://doi.org/10.1121/1.3672708

Mackersie CL, Dewey J, Guthrie LA (2011) Effects of fundamental frequency and vocal-tract length cues on sentence segregation by listeners with hearing loss. J Acoust Soc Am 130(2):1006–1019. https://doi.org/10.1121/1.3605548

Massida Z, Belin P, James C, Rouger J, Fraysse B, Barone P, Deguine O (2011) Voice discrimination in cochlear-implanted deaf subjects. Hear Res 275(1-2):120–129. https://doi.org/10.1016/j.heares.2010.12.010

Massida Z, Marx M, Belin P, James C, Fraysse B, Barone P, Deguine O (2013) Gender categorization in cochlear implant users. J Speech Lang Hear Res 56(5):1389–1401. https://doi.org/10.1044/1092-4388(2013/12-0132)

Meister H, Fürsen K, Streicher B, Lang-Roth R, Walger M (2016) The use of voice cues for speaker gender recognition in cochlear implant recipients. J Speech Lang Hear Res 59(3):546–556. https://doi.org/10.1044/2015_JSLHR-H-15-0128

Moore BCJ, Tyler LK, Marslen-Wilsen WD (2009) The Perception of speech: from sound to meaning (revised and updated). Oxford University Press, USA

Morton KD, Torrione PA Jr, Throckmorton CS, Collins LM (2008) Mandarin Chinese tone identification in cochlear implants: predictions from acoustic models. Hear Res 244(1-2):66–76. https://doi.org/10.1016/j.heares.2008.07.008

Moulines E, Charpentier F (1990) Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Commun 9:453–467

Mühler R, Ziese M, Rostalski D (2009) Development of a speaker discrimination test for cochlear implant users based on the Oldenburg Logatome corpus. ORL J Otorhinolaryngol Relat Spec 71(1):14–20. https://doi.org/10.1159/000165170

Munson B, Nelson PB (2005) Phonetic identification in quiet and in noise by listeners with cochlear implants. J Acoust Soc Am 118(4):2607–2617. https://doi.org/10.1121/1.2005887

Nelson D, Van Tasell D, Schroder A, Soli S, Levine S (1995) Electrode ranking of ‘place-pitch’ and speech recognition in electrical hearing. J Acoust Soc Am 98(4):1987–1999. https://doi.org/10.1121/1.413317

Peng SC, Tomblin JB, Cheung H, Lin YS, Wang LS (2004) Perception and production of mandarin tones in prelingually deaf children with cochlear implants. Ear Hear 25(3):251–264. https://doi.org/10.1097/01.AUD.0000130797.73809.40

Pisoni DB, Kronenberger WG, Roman AS, Geers AE (2011) Measures of digit span and verbal rehearsal speed in deaf children after more than 10 years of cochlear implantation. Ear Hear 32(Suppl):60S–74S. https://doi.org/10.1097/AUD.0b013e3181ffd58e

Raggio MW, Schreiner CE (1999) Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. J Neurophysiol 82(6):3506–3526. https://doi.org/10.1152/jn.1999.82.6.3506

Raven manual, Section 1 (1998) Standard progressive matrices. Oxford Psychologist Press Ltd, Oxford

Rogers CF, Healy EW, Montgomery AA (2006) Sensitivity to isolated and concurrent intensity and fundamental frequency increments by cochlear implant users under natural listening conditions. J Acoust Soc Am 119(4):2276–2287. https://doi.org/10.1121/1.2167150

Schvartz-Leyzac KC, Chatterjee M (2015) Fundamental-frequency discrimination using noise-band-vocoded harmonic complexes in older listeners with normal hearing. J Acoust Soc Am 138(3):1687–1695. https://doi.org/10.1121/1.4929938

Segal O, Houston D, Kishon-Rabin L (2016) Auditory discrimination of lexical stress patterns in hearing-impaired infants with cochlear implants compared with normal hearing: influence of acoustic cues and listening experience to the ambient language. Ear Hear 37(2):225–234. https://doi.org/10.1097/AUD.0000000000000243

Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11(2):157–189. https://doi.org/10.1016/0378-5955(83)90077-1

Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203(1-2):134–143. https://doi.org/10.1016/j.heares.2004.12.010

Shepherd RK, Hardie NA (2001) Deafness-induced changes in the auditory pathway: implications for cochlear implants. Audiol Neurootol 6(6):305–318. https://doi.org/10.1159/000046843

Skuk VG, Schweinberger SR (2013) Influences of fundamental frequency, formant frequencies, aperiodicity and spectrum level on the perception of voice gender. J Speech Lang Hear Res 57(1):285–296. https://doi.org/10.1044/1092-4388(2013/12-0314)

Smith DR, Patterson RD (2005) The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex, and age. J Acoust Soc Am 118(5):3177–3186. https://doi.org/10.1121/1.2047107

Smith DR, Walters TC, Patterson RD (2007) Discrimination of speaker sex and size when glottal-pulse rate and vocal-tract length are controlled. J Acoust Soc Am 122(6):3628–3639. https://doi.org/10.1121/1.2799507

Steeneken HJM, Houtgast T (2002) Phoneme-group specific octave-band weights in predicting speech intelligibility. Speech Comm 38(3–4):399–411. https://doi.org/10.1016/S0167-6393(02)00011-0

Svirsky MA, Teoh SW, Neuburger H (2004) Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiol Neurootol 9(4):224–233. https://doi.org/10.1159/000078392

Tao D, Deng R, Jiang Y, Galvin JJ 3rd, Fu QJ, Chen B (2015) Melodic pitch perception and lexical tone perception in Mandarin-speaking cochlear implant users. Ear Hear 36(1):102–110. https://doi.org/10.1097/AUD.0000000000000086

Tombaugh TN (2004) Trail making test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 19(2):203–214. https://doi.org/10.1016/S0887-6177(03)00039-8

Turgeon C, Champoux F, Lepore F, Ellemberg D (2015) Deficits in auditory frequency discrimination and speech recognition in cochlear implant users. Cochlear Implants Int 16(2):88–94. https://doi.org/10.1179/1754762814Y.0000000091

Vestergaard MD, Fyson NR, Patterson RD (2009) The interaction of vocal characteristics and audibility in the recognition of concurrent syllables. J Acoust Soc Am 125(2):1114–1124. https://doi.org/10.1121/1.3050321

Vestergaard MD, Fyson NR, Patterson RD (2011) The mutual roles of temporal glimpsing and vocal characteristics in cocktail-party listening. J Acoust Soc Am 130(1):429–439. https://doi.org/10.1121/1.3596462

Vongphoe M, Zeng FG (2005) Speaker recognition with temporal cues in acoustic and electric hearing. J Acoust Soc Am 118(2):1055–1061. https://doi.org/10.1121/1.1944507

Wechsler D (1991) Wechsler intelligence scale for children-III. The Psychological Corporation, San Antonio

Winfield DA (1983) The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture. Brain Res 285(2):155–169

Winn MB, Won JH, Moon IJ (2016) Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization. Ear Hear 37(6):e377–e390. https://doi.org/10.1097/AUD.0000000000000328

Won JH, Drennan WR, Rubinstein JT (2007) Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. J Assoc Res Otolaryngol 8(3):384–392. https://doi.org/10.1007/s10162-007-0085-8

Xu L, Pfingst BE (2008) Spectral and temporal cues for speech recognition: implications for auditory prostheses. Hear Res 242(1-2):132–140. https://doi.org/10.1016/j.heares.2007.12.010

Zaltz Y, Roth DA, Kishon-Rabin L (2010) Does feedback matter in an auditory frequency discrimination learning task? J Basic Clin Physiol Pharmacol 21(3):241–254

Zeng FG (2002) Temporal pitch in electric hearing. Hear Res 174:101–106