Visualization of Near-Field Enhancements of Gold Triangles by Nonlinear Photopolymerization
Tóm tắt
We report in this paper the near-field distribution in the case of gold triangle arrays by means of two-photon polymerization for a dipole and a quadrupole plasmon mode. In order to link the finite difference in the time domain (FDTD) simulations of the triangle array and the experimental results, extinction spectra for both cases in air and SU-8 environments are shown. In case of the 40-nm thick gold triangles with 85-nm side-length, we show that the calculated and experimentally obtained near-field for the excited dipole mode has the same distribution along the polarization of the exciting laser beam. In case of bigger triangles of 540-nm side-length a quadrupole mode is excited, which leads to a rotation of the near-field distribution by 90° referred to the polarization of the beam. This effect is also shown in the FDTD simulations.
Tài liệu tham khảo
Scheer E, Joyez P, Esteve D, Urbina C, Devoret MH (1997) Conduction channel transmissions of atomic-size aluminum contacts. Phys Rev Lett 78:3535–3538
Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106
Schuller JA, Barnard S, Wenshan C, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204
Sajanlal PR, Subramaniam C, Sasanpour P, Rashidian B, Pradeep T (2010) Electric field enhancement and concomitant Raman spectral effects at the edges of a nanometre-thin gold mesotriangle. J Mater Chem 20:2108–2113
Boneberg J, König-Birk J, Münzer H-J, Leiderer P, Shuford KL, Schatz GC (2007) Optical near-fields of triangular nanostructures. Appl Phys A 89:299
Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7(9):2784–2788
Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830
Suh JY, Donev EU, Lopez R, Feldman LC, Haglund R (2006) Modulated optical transmission of subwavelength hole arrays in metal-VO2 films. Appl Phys Lett 88(13):133115–3
Dürig U, Pohl DW, Rohner F (1986) Near-field optical-scanning microscopy. J Appl Phys 59(10):3318–3327
Myroshnychenko V, Rodriguez-Fernández J, Pastoriza-Santos I, Funston A, Novo C, Mulvaney P, Liz-Marzán L, Abajo F (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805
Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832
Sau T, Rogach A, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825
Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (1999) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 103(45):9846–9853
Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164
Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141
Jain PK, Huang W, El-Sayed MA (2007) On the Universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088
Deutsch B, Hillenbrand R, Novotny L (2010) Visualizing the optical interaction tensor of a gold nanoparticle pair. Nano Lett 10(2):652–656
Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R (2008) Nanomechanical control of an optical antenna. Nat Photonics 2:230–233
Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607
Hillenbrand R, Keilmann F, Harnap P, Sutherland DS, Aizpurua J (2003) Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl Phys Lett 83:368
Rang M, Jones AC, Zhou F, Li ZY, Wiley BJ, Xia Y, Raschke MB (2008) Optical near-field mapping of plasmonic nanoprisms. Nano Lett 8(10):3357–3363
Imura K, Okamoto H, Hossain MK, Kitajima M (2006) Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett 6(10):2173–2176
Ueno K, Takabatake S, Nishijima Y, Mizeikis V, Yokota Y, Misawa H (2010) Nanogap-assisted surface plasmon nanolithography. J Phys Chem Lett 1(3):657–662
Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner WE (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett 6(3):355–360
Ibn El Ahrach H, Bachelot R, Vial A, Lérondel G, Plain J, Royer P (2007) Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization. Phys Rev Lett 98:107402
Ueno K, Juodkazis S, Shibuya T, Mizeikis V, Yokota Y, Misawa H (2009) Nanoparticle-enhanced photopolymerization. J Phys Chem C 113:11720–11724
Murazawa N, Ueno K, Mizeikis V, Juodkazis S, Misawa H (2009) Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods. J Phys Chem C 113:1147–1149
Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K, Misawa H (2008) Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J Am Chem Soc 130:6928–6929
Nelayah J, Kociak M, Stephan O, Geuquet N, Henrard L, Garca de Abajo FJ, Pastoriza-Santos I, Liz-Marzn LM, Colliex C (2010) Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms. Nano Lett 10(3):902–907
Kühler P, García de Abajo FJ, Solis J, Mosbacher M, Leiderer P, Afonso CN, Siegel J (2009) Imprinting the optical near field of microstructures with nanometer resolution. Small 5:1825–1829
Koller DM, Hohenester U, Hohenau A, Ditlbacher H, Reil F, Galler N, Aussenegg FR, Leitner A, Trügler A, Krenn JR (2010) Superresolution moire mapping of particle plasmon modes. Phys Rev Lett 104(14):143901
Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J (2004) Imaging optical near-fields of nanostructures. Appl Phys Lett 85:5370
Sun Q, Juodkazis S, Murazawa N, Mizeikis V, Misawa H (2010) Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses. J Micromech Microeng 20:035004
Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134
Hubert C, Rumyantseva A, Lerondel G, Grand J, Kostcheev S, Billot L, Vial A, Bachelot R, Royer P, Chang SH, Gray SK, Wiederrecht GP, Schatz GC (2005) Near-field photochemical imaging of noble metal nanostructures. Nano Lett 5:615
Ekinci Y, Christ A, Agio M, Martin OJF, Solak HH, Löffler JF (2008) Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt Express 16:13287–13295
Burmeister F, Schaefle C, Matthes T, Boehmisch M, Boneberg J, Leiderer P (1997) Colloid monolayers as versatile lithographic masks. Langmuir 13:2983–2987
Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862
Shuford KL, Ratner MA, Schatz GC (2005) Multipolar excitation in triangular nanoprisms. J Chem Phys 123:114713
Perassi EM, Hernandez-Garrido JC, Moreno MS, Encina ER, Coronado EA, Midgley PA (2010) Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. Nano Lett 10:2097–2104
Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447
Palik ED, Ghosh G (1991) Handbook of optical constants of solids, 2nd edn. Academic, New York, NY