Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields
Tóm tắt
Từ khóa
Tài liệu tham khảo
Leong, 2015, Ultrasound pressure distributions generated by high frequency transducers in large reactors, Ultrason. Sonochem., 27, 22, 10.1016/j.ultsonch.2015.04.028
Suslick, 1999, Applications of ultrasound to materials chemistry, Annu. Rev. Mater. Sci., 29, 295, 10.1146/annurev.matsci.29.1.295
Mason, 2011, New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrason. Sonochem., 18, 226, 10.1016/j.ultsonch.2010.05.008
Compton, 1996, Voltammetry in the presence of ultrasound: mass transport effects, J. Appl. Electrochem., 26, 775, 10.1007/BF00683739
Schneider, 2008, Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry. Part 1. Sulfate-based electrolytes, Electrochim. Acta, 53, 5485, 10.1016/j.electacta.2008.03.020
Leighton, 2012
Lauterborn, 2010, Physics of bubble oscillations, Rep. Prog. Phys., 73, 106501, 10.1088/0034-4885/73/10/106501
Fernandez Rivas, 2012, Sonoluminescence and sonochemiluminescence from a microreactor, Ultrason. Sonochem., 19, 1252, 10.1016/j.ultsonch.2012.04.008
Ashokkumar, 2010, Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies, ChemPhysChem, 11, 1680, 10.1002/cphc.200901037
Sutkar, 2009, Design aspects of sonochemical reactors: techniques for understanding cavitational activity distribution and effect of operating parameters, Chem. Eng. J., 155, 26, 10.1016/j.cej.2009.07.021
Yasuda, 2007, Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies, Ultrason. Sonochem., 14, 699, 10.1016/j.ultsonch.2006.12.013
Hallez, 2007, Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers, Ultrason. Sonochem., 14, 739, 10.1016/j.ultsonch.2006.12.012
Gonze, 1998, Standing waves in a high frequency sonoreactor: visualization and effects, Chem. Eng. Sci., 53, 523, 10.1016/S0009-2509(97)00312-6
Tuziuti, 2004, Correlation in spatial intensity distribution between volumetric bubble oscillations and sonochemiluminescence in a multibubble system, Res. Chem. Intermed., 30, 755, 10.1163/1568567041856909
Asakura, 2008, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrason. Sonochem., 15, 244, 10.1016/j.ultsonch.2007.03.012
Lee, 2008, Spatial distribution enhancement of sonoluminescence activity by altering sonication and solution conditions, J. Phys. Chem. B, 112, 15333, 10.1021/jp8060224
Sunartio, 2007, Correlation between Na∗ emission and “chemically active” acoustic cavitation bubbles, ChemPhysChem, 8, 2331, 10.1002/cphc.200700426
Michaud, 2015, Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission, Ultrason. Sonochem., 26, 56, 10.1016/j.ultsonch.2015.01.007
Kuttruff, 1988
Mason, 1994, Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor, Ultrason. Sonochem., 1, S91, 10.1016/1350-4177(94)90004-3
Xu, 2013, Numerical simulation of liquid velocity distribution in a sonochemical reactor, Ultrason. Sonochem., 20, 452, 10.1016/j.ultsonch.2012.04.011
2012
ONDA
Viennet, 2009, Study of ultrasound transmission through an immersed glass plate in view of sonochemical reactor design optimisation, Adv. Acoust. Vib., 2009, 1
Class Instrumentation Ltd
Taylor, 1970, The spectra of sonoluminescence, Aust. J. Phys., 23, 319
National Institutes of Health
Gondrexon, 1997, Degassing effect and gas-liquid transfer in a high frequency sonochemical reactor, Chem. Eng. J., 66, 21, 10.1016/S1385-8947(96)03124-5
Rozenberg, 1971
Thiemann, 2011, Characterization of an acoustic cavitation bubble structure at 230kHz, Ultrason. Sonochem., 18, 595, 10.1016/j.ultsonch.2010.10.004
Louisnard, 2012, A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation, Ultrason. Sonochem., 19, 56, 10.1016/j.ultsonch.2011.06.007
Zhou, 2013, Correlation between sonochemistry and sonoluminescence at various frequencies, RSC Adv., 3, 9319, 10.1039/c3ra41123k
Louisnard, 2012, A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures, Ultrason. Sonochem., 19, 66, 10.1016/j.ultsonch.2011.06.008
Leighton, 1990, Primary Bjerknes forces, Eur. J. Public Health, 11, 47
Thiemann, 2017, Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid, Ultrason. Sonochem., 34, 663, 10.1016/j.ultsonch.2016.06.013
Nowak, 2014, Unsteady translation and repetitive jetting of acoustic cavitation bubbles, Phys. Rev. E, 90, 033016, 10.1103/PhysRevE.90.033016
Kleis, 1990, Dependence of speed of sound on salinity and temperature in concentrated NaCl solutions, Solar Energy, 45, 201, 10.1016/0038-092X(90)90087-S
Millero, 1987, PVT properties of concentrated electrolytes. VI. The speed of sound and apparent molal compressibilities of NaCl, Na2SO4, MgCl2, and MgSO4 solutions from 0 to 100°C, J. Solution Chem., 16, 269, 10.1007/BF00646119
Dezhkunov, 2002, Multibubble sonoluminescence intensity dependence on liquid temperature at different ultrasound intensities, Ultrason. Sonochem., 9, 103, 10.1016/S1350-4177(01)00116-X
Toma, 2011, A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500kHz for organic solvents, Ultrason. Sonochem., 18, 197, 10.1016/j.ultsonch.2010.05.005
Flint, 1991, Sonoluminescence from alkali-metal salt solutions, J. Phys. Chem., 95, 1484, 10.1021/j100156a084